

ENVIRONMENTAL INVESTIGATION SERVICES

REPORT

то

WATERMARK CHATSWOOD PTY LTD

ON

PRELIMINARY STAGE 2 ENVIRONMENTAL SITE ASSESSMENT

FOR

PROPOSED CHATSWOOD GOLF CLUB RE-DEVELOPMENT

AT

BEACONSFIELD ROAD, CHATSWOOD, NSW

REF: E27168KFrpt

16 MARCH 2017

Postal Address: PO Box 976, North Ryde BC NSW 1670 Tel: 02 9888 5000 • Fax: 9888 5004 EIS is a division of Jeffery and Katauskas Pty Ltd • ABN 17 003 550 801

Document Distribution Record		
Report Reference	Distribution	Report Date
E27168KFrpt	Watermark Chatswood Pty Ltd	16 March 2017

Report prepared by:

Geoff Fletcher Senior Environmental Scientist

Report reviewed by:

Adrian Kingswell Principal Environmental Scientist

© Document Copyright of Environmental Investigation Services (EIS)

This Report (which includes all attachments and annexures) has been prepared by EIS for the Client, and is intended for the use only by that Client.

This Report has been prepared pursuant to a contract between EIS and the Client and is therefore subject to:

- a) EIS proposal in respect of the work covered by the Report;
- b) The limitations defined in the client's brief to EIS; and
- c) The terms of contract between EIS and the Client, including terms limiting the liability of EIS.

If the Client, or any person, provides a copy of this Report to any third party, such third party must not rely on this Report, except with the express written consent of EIS which, if given, will be deemed to be upon the same terms, conditions, restrictions and limitations as apply by virtue of (a), (b), and (c) above.

Any third party who seeks to rely on this Report without the express written consent of EIS does so entirely at their own risk and to the fullest extent permitted by law, EIS accepts no liability whatsoever, in respect of any loss or damage suffered by any such third party.

EXECUTIVE SUMMARY

Watermark Chatswood Pty Ltd ('the client') commissioned Environmental Investigation Services (EIS) to undertake a Preliminary Stage 2 Environmental Site Assessment (ESA) for the proposed redevelopment at Chatswood Golf Club, Beaconsfield Road, Chatswood, NSW. The site location is shown on Figure 1 and the assessment was confined to the proposed development area as shown on Figure 2. The proposed development area is referred to as 'the site' in this report.

The assessment objectives were to:

- Provide an appraisal of the past site use(s) based on a review of EIS 2016 Stage 1 ESA;
- Assess the current site conditions and use via a site walkover inspection;
- Identify potential contamination sources/areas of environmental concern (AEC) and contaminants of potential concern (CoPC);
- Assess the soil contamination conditions via implementation of a preliminary sampling and analysis program;
- Prepare a conceptual site model (CSM);
- Assess the potential risks posed by contamination to the receptors identified in the CSM (Tier 1 assessment);
- Provide a preliminary waste classification for off-site disposal of soil;
- Assess whether further intrusive investigation and/or remediation is required; and
- Assess whether the site is suitable or can be made suitable for the proposed development (from a contamination viewpoint).

The scope of work included the following:

- Review of previous investigation reports prepared by EIS;
- A walkover site inspection;
- Design and implementation of a sampling, analysis and quality plan (SAQP);
- Interpretation of the analytical results against the adopted site assessment criteria (SAC);
- Assessment of data quality; and
- Preparation of an ESA report presenting the results of the assessment, including a CSM and Tier 1 risk assessment.

Samples for this investigation were obtained from 15 sampling points as shown on the attached Figure 2. This density is approximately 60% of the minimum sampling density recommended by the EPA.

An elevated lead concentration was encountered in one of the samples above the SAC. EIS are of the opinion that the risk posed to human receptors is low to moderate and will require remediation and/or management.

EIS consider that the site can be made suitable for the proposed development provided that the following recommendations are implemented to address the data gaps and to characterise the risks:

- Undertake an additional ESA to address the data gaps identified in Section 10.3;
- Prepare a Remediation Action Plan (RAP) to outline remedial measures for the site;
- Prepare a Validation Assessment (VA) report on completion of remediation; and
- Undertake a Hazardous Materials Assessment (Hazmat) for the existing buildings prior to the commencement of demolition work.

In the event unexpected conditions are encountered during development work or between sampling locations that may pose a contamination risk, all works should stop and an environmental consultant should be engaged to inspect the site and address the issue.

The conclusions and recommendations should be read in conjunction with the limitations presented in the body of the report.

TABLE OF CONTENTS

1	INTRODU	JCTION	1
	1.1	Proposed Development Details	1
	1.2	Aim and Objectives	1
	1.3	Scope of Work	2
2	SITE INFORMATION		3
	2.1	Background	3
	2.2	Site Identification	4
	2.3	Site Location and Regional Setting	5
	2.4	Topography	5
	2.5	Site Inspection	5
	2.6	Surrounding Land Use	6
	2.7	Underground Services	6
3	GEOLOG	Y AND HYDROGEOLOGY	7
	3.1	Regional Geology	7
	3.2	Acid Sulfate Soil Risk and Planning	7
	3.3	Hydrogeology	7
	3.4	Receiving Water Bodies	7
4	CONCEP	TUAL SITE MODEL	8
	4.1	Potential Contamination Sources/AEC and CoPC	8
	4.2	Known Contamination Sources/AEC and CoPC	9
	4.3	Mechanism for Contamination, Affected Media, Receptors and Exposure Pathways	9
5	SAMPLING, ANALYSIS AND QUALITY PLAN		11
	5.1	Data Quality Objectives (DQO)	11
	5.2	Soil Sampling Plan and Methodology	13
	5.3	Analytical Schedule	15
6	SITE ASS	ESSMENT CRITERIA (SAC)	17
7	INVESTIC	GATION RESULTS	19
	7.1	Subsurface Conditions	19
	7.2	Field Screening	19
	7.3	Soil Laboratory Results	20
8	DATA QU	JALITY ASSESSMENT	23
9	WASTE C	CLASSIFICATION OF SOIL FOR OFF-SITE DISPOSAL	26
10	TIER 1 RI	SK ASSESSMENT AND REVIEW OF PCSM	27
	10.1	Source and Extent of Contamination	28
	10.2	Fate and Transport of Contaminants	29
	10.3	Data Gaps	29
11	CONCLU	SION	31
	11.1	Regulatory Requirement	31
12	LIMITAT	IONS	33
List o	of In-Text Ta	bles	

Important Information About The Site Assessment Report

<u>REPORT FIGURES:</u> Figure 1: Site Location Plan Figure 2: Sample Location Plan Figure 3: Site Contamination Data

LABORATORY SUMMARY TABLES:

Table A: Soil Laboratory Results Compared to HILs

 Table B:
 Soil Laboratory Results Compared to HSLs

Table C: Soil Laboratory Results Compared to EILs and ESLs

Table D: Soil Laboratory Results Compared to Waste Classification Guidelines

TABLE OF CONTENTS

 Table E:
 Summary of Laboratory TCLP Results

 Table F:
 Soil Intra-Laboratory Duplicate Results & RPD Calculations

Table G: Soil Inter-Laboratory Duplicate Results & RPD Calculations

Table H: Summary of QA/QC – Trip Spike and Trip Blank Results

APPENDICES:

Appendix A: Site Information including Site History

Appendix B: Borehole Logs

Appendix C: Laboratory Reports & COC Documents

Appendix D: Report Explanatory Notes

ABBREVIATIONS

Ambient Background Concentrations	ABC
Added Contaminant Limits	ACL
Asbestos Containing Material	ACM
Australian Drinking Water Guidelines	ADWG
Area of Environmental Concern	AEC
Australian Height Datum	AHD
Asbestos Health Screening Levels	ASL
Acid Sulfate Soil	ASS
Above-Ground Storage Tank	AST
Below Ground Level	BGL
Bureau of Meteorology	BOM
Benzene, Toluene, Ethylbenzene, Xylene	BTEX
Benzene, Toluene, Ethylbenzene, Xylene, Naphthalene	BTEXN
Cation Exchange Capacity	CEC
Contaminated Land Management	CLM
Construction Management Plan	СМР
Contaminant(s) of Potential Concern	CoPC
Chain of Custody	COC
Conceptual Site Model	CSM
Data Quality Indicator	DQI
Data Quality Objective	DQO
Detailed Site Investigation	DSI
Ecological Assessment Criteria	EAC
Ecological Investigation Levels	EILs
Ecological Screening Level	ESL
Environmental Management Plan	EMP
Excavated Natural Material	ENM
Environmental Protection Agency	EPA
Environmental Site Assessment	ESA
Ecological Screening Level	ESL
Fibre Cement Fragments	FCF
General Approvals of Immobilisation	GAI
General Solid Waste	GSW
Health Investigation Level	HILs
Hardness Modified Trigger Values	HMTV
Health Screening Level	HSLs
International Organisation of Standardisation	ISO
Lab Control Spike	LCS
Light Non-Aqueous Phase Liquid	LNAPL
Local Government Authority	LGA
Map Grid of Australia	MGA
National Association of Testing Authorities	ΝΑΤΑ
National Environmental Protection Measure	NEPM
Organochlorine Pesticides	OCP
Organophosphate Pesticides	OPP
Polycyclic Aromatic Hydrocarbons	РАН

ABBREVIATIONS

Photo-ionisation Detector	PID
Practical Quantitation Limit	PQL
Preliminary Site Investigation	PSI
Quality Assurance	QA
Quality Control	QC
Remediation Action Plan	RAP
Relative Percentage Difference	RPD
Restricted Solid Waste	RSW
Site Assessment Criteria	SAC
Sampling, Analysis and Quality Plan	SAQP
Site Audit Statement	SAS
Site Audit Report	SAR
Specific Contamination Concentration	SCC
Standard Penetration Test	SPT
Semi-Volatile Organic Compounds	sVOC
Standard Sampling Procedure	SSP
Standard Water Level	SWL
Standard Sampling Procedure	SSP
Trip Blank	ТВ
Toxicity Characteristic Leaching Procedure	TCLP
Total Recoverable Hydrocarbons	TRH
Trip Spike	TS
Upper Confidence Limit	UCL
United States Environmental Protection Agency	USEPA
Underground Storage Tank	UST
Virgin Excavated Natural Material	VENM
Volatile Organic Compounds	VOC
Work Health and Safety	WHS

1 INTRODUCTION

Watermark Chatswood Pty Ltd ('the client') commissioned Environmental Investigation Services (EIS)¹ to undertake a Preliminary Stage 2 Environmental Site Assessment (ESA) for the proposed redevelopment at Chatswood Golf Club, Beaconsfield Road, Chatswood, NSW. The site location is shown on Figure 1 and the assessment was confined to the proposed development area as shown on Figure 2. The proposed development area is referred to as 'the site' in this report.

A geotechnical investigation was undertaken in conjunction with this assessment by JK Geotechnics². The results of the investigation are presented in a separate report (Ref. 27168Zrpt, dated 8 March 2017³). This report should be read in conjunction with the JK report.

1.1 <u>Proposed Development Details</u>

Based on the supplied information, EIS understand that the redevelopment will include a new club over the south-western portion of the site and Independent Living Units (ILU) over the north. The proposed new club will comprise a three to four storey clubhouse and adjacent single level ancillary facilities both over two basement carpark levels. The ILU building will be a four to five story buildings including Basement 1. The Basement 2 level of the club is indurated with a finished floor reduced level (RL) at RL27.5m and the ILU Basement 1 level at RL33.7m. The proposed development will be excavated into the hillside and a maximum vertical excavation depth up to approximately 15m has been estimated.

1.2 <u>Aim and Objectives</u>

The primary aims of the assessment were to make a preliminary assessment of the soil contamination conditions. The assessment objectives were to:

- Provide an appraisal of the past site use(s) based on a review of EIS 2016 Stage 1 ESA;
- Assess the current site conditions and use via a site walkover inspection;
- Identify potential contamination sources/areas of environmental concern (AEC) and contaminants of potential concern (CoPC);
- Assess the soil contamination conditions via implementation of a preliminary sampling and analysis program;
- Prepare a conceptual site model (CSM);
- Assess the potential risks posed by contamination to the receptors identified in the CSM (Tier 1 assessment);
- Provide a preliminary waste classification for off-site disposal of soil;
- Assess whether further intrusive investigation and/or remediation is required; and
- Assess whether the site is suitable or can be made suitable for the proposed development (from a contamination viewpoint).

¹ Environmental consulting division of Jeffery & Katauskas Pty Ltd (J&K)

² Geotechnical consulting division of J&K

³ Referred to as JK 2017 Report

1.3 <u>Scope of Work</u>

The assessment was undertaken generally in accordance with an EIS proposal (Ref: EP43884KF) of 23 November 2016 and written acceptance from the client of 23 November 2016. The scope of work included the following:

- Review of previous investigation reports prepared by EIS;
- A walkover site inspection;
- Design and implementation of a sampling, analysis and quality plan (SAQP);
- Interpretation of the analytical results against the adopted site assessment criteria (SAC);
- Assessment of data quality; and
- Preparation of an ESA report presenting the results of the assessment, including a CSM and Tier 1 risk assessment.

The report was prepared with reference to regulations/guidelines outlined in the table below. Individual guidelines are also referenced within the text of the report.

Table 1-1: Guidelines

Guidelines/Regulations/Documents
Contaminated Land Management Act (1997) ⁴
State Environmental Planning Policy No.55 – Remediation of Land (1998) ⁵
Managing Land Contamination, Planning Guidelines SEPP55 – Remediation of Land (1998) ⁶
Guidelines for Consultants Reporting on Contaminated Sites (2011) ⁷
Guidelines for the NSW Site Auditor Scheme, 2nd Edition (2006) ⁸
National Environmental Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) ⁹

⁴ NSW Government Legislation, (1997). *Contaminated Land Management Act 1997*. (referred to as CLM Act 1997)

⁵ NSW Government, (1998). *State Environmental Planning Policy No. 55 – Remediation of Land.* (referred to as SEPP55)

⁶ Department of Urban Affairs and Planning, and Environment Protection Authority, (1998). *Managing Land Contamination, Planning Guidelines SEPP55 – Remediation of Land*. (SEPP55 Planning Guidelines)

⁷ NSW Office of Environment and Heritage (OEH), (2011). *Guidelines for Consultants Reporting on Contaminated Sites.* (referred to as Reporting Guidelines 2011)

⁸ NSW DEC, (2006). *Guidelines for the NSW Site Auditor Scheme, 2nd ed.* (referred to as Site Auditor Guidelines 2006)

⁹ National Environment Protection Council, (2013). *National Environmental Protection (Assessment of Site Contamination) Amendment Measure 1999* (as amended 2013). (referred to as NEPM 2013)

2 <u>SITE INFORMATION</u>

2.1 Background

2.1.1 <u>Preliminary Environmental Site Assessment (EIS, 2014¹⁰)</u>

EIS have undertaken a Preliminary Soil Screening and Waste Classification Assessment for a previous proposed subdivision in the south section of the site.

The site inspection was undertaken on 17 January 2014. Samples for the investigation were obtained from four (4) evenly spaced sampling points as shown on the attached Figure 2. The sample locations were drilled using hand equipment due to access restrictions.

Subsurface conditions encountered generally consisted of fill material to the termination depths of the boreholes between 0.3m and 0.8m. With the exception of BH4, all boreholes were inferred to have refused on bedrock. The fill material typically consisted of silty sand or silty clay with inclusions of sandstone, shale, ironstone and igneous gravels, root fibres, ash, slag, concrete and brick fragments.

Fragments of fibre cement sheeting (containing asbestos) were observed on the surface in the south section of the site (see Figure 2). The asbestos fragments appeared to be confined to the surface and could have been associated with potential illegal dumping or level filling of the south section of the site.

The fill material was classified General Solid Waste (non-putrescible) (GSW) containing asbestos in accordance with the NSW EPA Waste Classification Guidelines 2014.

EIS recommended that further investigation was required to better assess the extent of the contamination.

2.1.2 <u>Preliminary Stage 1 Environmental Site Assessment (EIS, 2016¹¹)</u>

Watermark Chatswood Pty Ltd ('the client') commissioned Environmental Investigation Services (EIS) to undertake a Preliminary Stage 1 Environmental Site Assessment (PESA) for the proposed redevelopment at Chatswood Golf Club, Beaconsfield Road, Chatswood, NSW.

A review of the site history information has indicated the following:

¹⁰ EIS, (2014), Report to Chatswood on Preliminary Soil Screening & Waste Classification Assessment for Proposed Subdivision at Chatswood Golf Club, Beaconsfield Road, Chatswood, NSW. (Report Ref: E27168Klet, dated 12 February 2014) (referred to as EIS 2014 Report)

¹¹ EIS, (2016), Report to Watermark Chatswood on Preliminary Stage 1 Environmental Site Assessment for Proposed Chatswood Golf Club Re-development at 126 Beaconsfield Road, Chatswood, NSW. (Report Ref: E27168KDrpt, dated 30 August 2016) (referred to as EIS 2016 Report)

- The land title records indicated that the site had been owned by a grazier between 1916 and 1918. The site has been owned by the Chatswood Golf Club since approximately 1945 to date;
- The aerial photographs indicated that the Chatswood Golf Club was constructed between 1965 and 1970;
- Council records indicate that a building application for the storage of flammable liquids was submitted in 1985 and building applications for alterations and additions to the club house building were submitted to council in 1965 and 1994;
- WorkCover records indicated that a current licence is held by Chatswood Golf Club. The licence relates to the storage of petroleum and pesticide liquids. The hazardous goods storage areas are located within associated green keepers sheds off-site; and
- NSW EPA records did not indicate any notices for the site.

EIS considered the site could be made suitable for the Chatswood Golf Club redevelopment provided the following additional work was undertaken to better assess the risks:

- 1. Undertake a Stage 2 ESA to meet the sampling density outlined in the NSW EPA Contaminated Sites Sampling Design Guidelines (1995);
- 2. Undertake a waste classification assessment for the off-site disposal of material excavated for the proposed development; and
- 3. If any contamination is encountered prepare and implement a Remediation Action Plan (RAP).

2.2 <u>Site Identification</u>

Current Site Owner:	Chatswood Golf Club Limited
Site Address:	Beaconsfield Road, Chatswood, NSW
Lot & Deposited Plan:	• Part of Lot 1 DP1124646;
	• Part of Lot 1 DP651667;
	• Part of Lot 163 DP752067; and
	• Part of Lot 22 DP626634.
Current Land Use:	Commercial/Recreational
Proposed Land Use:	Commercial/Recreational/Residential
Local Government Authority	Willoughby Council
(LGA):	
Current Zoning:	Private Recreation (RE2)
Area of Proposed Development	15,000
(m ²):	
RL (AHD in m) (approx.):	29-45
Geographical Location (decimal	Latitude: -33.801081
degrees) (approx.):	
	Longitude: 151.16382

Table 2-1: Site Identification

2.3 <u>Site Location and Regional Setting</u>

The site is located in a predominantly residential area of Chatswood. The site is located at the west end of Beaconsfield road. The site is bounded by Chatswood Golf Course on the north, west and southern sides. Residential premises are located to the east of the site. The site is located approximately 500m to the east of Lane Cove River.

2.4 <u>Topography</u>

The site is located within an undulating topographic setting. The site itself is located on the side of a west facing hillside slope which appears to fall to the west at approximately 7-10° towards the Lane Cove River. Significantly steeper slopes are present (up to about 30°) particularly at the southern end of the site. The site levels appeared to have been altered to accommodate on grade car parking levels and the existing club house building.

2.5 <u>Site Inspection</u>

A walkover inspection of the site was undertaken by EIS on 15 August 2016 and 30 January 2017. The inspection was limited to accessible areas of the site and immediate surrounds. An internal inspection of buildings was not undertaken. Selected site photographs obtained during the inspection are attached in the appendices.

At the time of the investigation, the site contained a two tiered asphaltic concrete (AC) surfaced carpark (large open area near the crest of the hill, and thin strip mid-slope). The site contained a two storey brick and concrete golf club building (which appeared to be in good condition) and a metal green keepers shed in the north-west section of the site.

Outcrops of sandstone bedrock were visible adjacent to the uphill (eastern) boundary of the site, on the vegetated slope between the two carparks and at the toe of the slope below the carparks. The remainder of the site was heavily vegetated, containing medium to large sized trees and smaller shrubs.

A small fill stockpile (approximately 35m³) was observed within the south west section of the site adjacent to the main entrance. The stockpile consisted of silty clay with inclusions of sandstone boulders, cobbles and gravel, concrete, bricks and igneous gravel. On the ground surface close to the stockpile a fibre cement fragment (FCF) was observed. This FCF was sampled and sent to the laboratory for analysis (Ref: GFF1)

No chemicals were seen to be stored in the site area, however chemicals associated with green keeping and garden maintenance are presumably stored in the green keepers shed.

Surface water drainage at the site is likely to flow towards the golf course with the natural slope of the land.

No obvious indications of Underground Storage Tanks (UST/s) were observed at the site.

2.6 <u>Surrounding Land Use</u>

During the site inspection, EIS observed the following land uses in the immediate surrounds:

- North Recreational (Golf Course);
- South Recreational (Golf Course);
- East Residential; and
- West Recreational (Golf Course).

EIS did not observe any land uses in the immediate surrounds that were identified as potential contamination sources for the site.

2.7 <u>Underground Services</u>

The 'Dial Before You Dig' (DBYD) plans were reviewed for the assessment in order to establish whether any major underground services exist at the site or in the immediate vicinity that could act as a preferential pathway for contamination migration. No major services were identified that would be expected to act as preferential pathway for contamination migration.

3 <u>GEOLOGY AND HYDROGEOLOGY</u>

3.1 <u>Regional Geology</u>

A review of the regional geological map of Sydney (1983¹²), indicates that the site is underlain by Hawkesbury Sandstone, which typically consists of medium to coarse grained quartz sandstone with minor shale and laminite lenses.

3.2 Acid Sulfate Soil Risk and Planning

The site is not located in an acid sulfate soil (ASS) risk area according to the risk maps prepared by the Department of Land and Water Conservation.

3.3 <u>Hydrogeology</u>

Hydrogeological information presented in the Lotsearch report (EIS 2016 Stage 1 ESA) indicated that the regional aquifer on-site and in the areas immediately surrounding the site includes porous, extensive aquifers of low to moderate productivity. There were a total of 4 registered bores within the report buffer of 500m. In summary:

- The nearest registered bore was located approximately 80m from the site. This was utilised for industrial and recreational purposes;
- The majority of the bores were registered for irrigation and recreational purposes.

The information reviewed for this assessment indicated that the subsurface conditions at the site are likely to consist of residual soils overlying relatively shallow bedrock. The potential for viable groundwater abstraction and use of groundwater under these conditions is considered to be low. A perched aquifer in the subsurface may be present.

3.4 <u>Receiving Water Bodies</u>

Surface water bodies were not identified at the site. The closest surface water body is considered to be the golf course dam located approximately 75m to the west and down gradient of the site. Lane Cover River is located approximately 500m to the west of the site. The golf course dam and Lane Cover River are considered to be potential receptors.

¹² Department of Mineral Resources, (1983). 1:100,000 Geological Map of Sydney (Series 9130).

4 <u>CONCEPTUAL SITE MODEL</u>

NEPM (2013) defines a CSM as a representation of site related information regarding contamination sources, receptors and exposure pathways between those sources and receptors. The CSM for the site is presented in the following sub-sections and is based on the site information (including the site inspection information) and the review of site history information. Reference should also be made to the figures attached in the appendices.

4.1 <u>Potential Contamination Sources/AEC and CoPC</u>

The potential contamination sources/AEC and CoPC are presented in the following table:

Source / AEC	CoPC
<u>Fill material</u> - The site appears to have been historically filled to achieve the existing levels. The fill may have been imported from various sources and could be contaminated.	Heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc), petroleum hydrocarbons (referred to as total recoverable hydrocarbons – TRHs), benzene, toluene, ethylbenzene and xylene (BTEX), polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs), organophosphate pesticides (OPPs), polychlorinated biphenyls (PCBs) and asbestos.
Storage of petroleum liquids – WorkCover records indicated that a current licence is held by Chatswood Golf Club. The licence relates to the storage of petroleum and pesticide liquids. The hazardous goods storage area are located within associated green keepers sheds	Lead, TRH, BTEX and PAHs
Historical agricultural use – The site appears to have been owned by a grazier between 1916 and 1918. Contamination impacts associated with agriculture at this time are not expected to have been significant. There may have been some demolition of structures.	Heavy metals and asbestos
<u>Use of pesticides</u> – Pesticides may have been used beneath the buildings and/or around the site.	Heavy metals, OCPs and OPPs
The site has been occupied by the Chatswood Golf Course since approximately 1945. Pesticides have been stored at the green keepers located off site. There is a potential that pesticides have been sprayed within the proposed development	

Table 4-1: Potential Contamination Sources/AEC and Contaminants of Potential Concern

Source / AEC	CoPC
area. The use of pesticides during this period could have resulted in potential contamination.	
<u>Hazardous Building Material</u> – Hazardous building materials may be present in the existing buildings/ structures on site.	Asbestos, lead and PCBs

4.2 Known Contamination Sources/AEC and CoPC

Asbestos containing materials (ACM) were identified on the surface in the south-east section of the site as part of the EIS Preliminary Environmental Site Assessment undertaken in 2014.

4.3 Mechanism for Contamination, Affected Media, Receptors and Exposure Pathways

The mechanisms for contamination, affected media, receptors and exposure pathways relevant to the potential contamination sources/AEC are outlined in the following CSM table:

Table 4-2: CSM	
Potential mechanism for contamination	 Potential mechanisms for contamination include: Fill material – importation of impacted material, 'top-down' impacts (e.g. leaching from surficial material), or sub-surface release (e.g. impacts from buried material); Fuel storage – 'top-down', spills (e.g. during filling of the tanks and/or dispensing activities), or sub-surface release (e.g. from leaking tank or pipework);
	 Historical agricultural use – 'top-down' and spills (e.g. application of pesticides, refuelling or repairing machinery, and other activities at the ground surface level); Use of pesticides – 'top-down' and spills (e.g. during normal use, application and/or improper storage); Hazardous building materials – 'top-down' (e.g. demolition resulting in surficial impacts in unpaved areas).
Affected media	Soil, soil vapour and groundwater have been identified as potentially affected media.
Receptor identification	Human receptors include site occupants/users, construction workers and intrusive maintenance workers. Off-site human receptors include adjacent land users, groundwater users and recreational water users within Lane Cove River.
	Ecological receptors include terrestrial organisms and plants within unpaved areas (including the proposed landscaped areas), and freshwater/marine ecology in the golf course dam and Lane Cover River.

Potential Exposure	Potential exposure pathways relevant to the human receptors include
pathways	ingestion, dermal absorption and inhalation of dust (all contaminants) and vapours (volatile TRH, naphthalene and BTEX). The potential for exposure would typically be associated with the construction and excavation works, and use of unpaved areas (i.e. the gardens) and basement (i.e. vapour inhalation or incidental contact with groundwater seepage). Potential exposure pathways for ecological receptors include primary contact and ingestion.
	Exposure to groundwater is unlikely to occur in the Lane Cove River through direct migration, however groundwater has the potential to enter the river via the stormwater system (which is expected to discharge into the river) in a drained basement scenario.
Presence of preferential pathways for contaminant movement	Surface levels and site topography are potential preferential pathways for contamination migration to other parts of the golf course. This could occur via surface run-off/seepage.

5 SAMPLING, ANALYSIS AND QUALITY PLAN

5.1 Data Quality Objectives (DQO)

The NEPM 2013 defines the DQO process as a seven step iterative planning tool used to define the type, quantity and quality of data needed to inform decisions relating to the environmental condition of the site. The DQO process is detailed in the Site Auditor Guidelines 2006 and the USEPA documents Data Quality Objectives Processes for Hazardous Waste Site Investigations (2000) and Guidance on Systematic Planning Using the Data Quality Objectives Process (2006). These seven steps are applicable to this assessment as summarised in the table below:

Step	Input
State the	The EIS 2016 Preliminary stage 1 ESA and CSM has identified AEC at the site which may pose
Problem	a risk to the site receptors. An intrusive investigation is required to assess the risk and
	comment on the suitability of the site for the proposed development or intended landuse.
Identify the Decisions/ Goal of the Study	 The data collection is project specific and has been designed based on the following information: Review of previous EIS investigation reports; AEC, CoPC, receptors, pathways and medium identified in the CSM; Development of SAC for each media; and The use of decision statements outlined below: The decisions to be addressed by the investigation are: Do any of the soil samples contain contamination concentrations above the SAC?
	2 Was aspestos detected in any of the samples? and
	3. Is further investigation necessary?
	 Statistical analysis will be used to assess the laboratory data against the SAC. The following criteria will be adopted: The 95% Upper Confidence Limit (UCL) value of the arithmetic mean concentration of each contaminant should be less than the SAC; The standard deviation (SD) of the results must be less than 50% of the SAC; and No single value exceeds 250% of the relevant SAC.
	2) Statistical calculations will not be undertaken if all results are below the SAC; and
	 3) Statistical calculations will not be undertaken on the following: > Health Screening Levels (HSLs) – elevated point source contamination associated with petroleum hydrocarbons can pose a vapour risk to receptors; and > Ecological Investigation Levels (EILs) – elevated EILs can pose a potential point source ecological risk.

Table 5-1: DQOs – Seven Steps

Step	Input
Identifv	The following information will be collected:
Information	 Soil samples based on subsurface conditions:
Inputs	• Fibre Cement Fragments (FCF) in the vicinity of the sampling points;
	• The SAC will be designed based on the criteria outlined in NEPM 2013. Other criteria will be used as required and detailed in this report;
	• The samples will be analysed in accordance with the analytical methods outlined in NEPM 2013;
	 Field screening information (i.e. PID data, presence of hydrocarbons etc.) will be taken into consideration in selecting the analytical schedule; and
	 Any additional information that may arise during the field work will also be used as data inputs.
Define the Study	The sampling will be confined to the proposed development area of the site as shown in Figure 2.
boundary	Fill has been identified as an AEC. The source of fill has not been established. Fill is considered to be heterogeneous material with PCC occurring in random pockets or layers. The presence of PCC in between sampling points cannot be measured.
	The areas excluded from the investigation are outlined in the data gaps.
analytical approach (or decision rule)	 The following acceptance criteria will be used to assess the RPD results: results > 10 times the practical quantitation limit (PQL), RPDs < 50% are acceptable; results between 5 and 10 times PQL, RPDs < 75% are acceptable; results < 5 times PQL, RPDs < 100% are acceptable; and An explanation is provided if RPD results are outside the acceptance criteria. Acceptable concentrations in Trip Blanks (TB) samples. Non-compliance to be documented in the report; The following acceptance criteria will be used to assess the primary laboratory QA/QC results. Non-compliance to be documented: <u>RPDs</u>:
	 Results that are < 5 times the PQL, any RPD is acceptable; and Results > 5 times the PQL, RPDs between 0-50% are acceptable; LCS recovery and matrix spikes: 70-130% recovery acceptable for metals and inorganics; 60-140% recovery acceptable for organics; and 10-140% recovery acceptable for VOCs; Surrogate spike recovery: 60-140% recovery acceptable for general organics; and 10-140% recovery acceptable for general organics; and 80-140% recovery acceptable for VOCs; Blanks: All less than PQL.

Step	Input
Specify the	NEPM 2013 defines decision errors as 'incorrect decisions caused by using data which is not
performance	representative of site conditions'. This can arise from errors during sampling or analytical
or acceptance	testing. A combination of these errors is referred to as 'total study error'. The study error
criteria	can be managed through the correct choice of sample design and measurement.
	Decision errors can be controlled through the use of hypothesis testing. The test can be used
	to show either that the baseline condition is false or that there is insufficient evidence to
	indicate that the baseline condition is false.
	The null hypothesis is an assumption that is assumed to be true in the absence of contrary
	evidence. In this case, for example, the PCC identified in the PCSM is considered to pose a
	risk to receptors unless proven not to. The null hypothesis has been adopted for this
	assessment.
Optimise the	The most resource-effective design will be used in an optimum manner to achieve the
design for	assessment objectives.
obtaining	
data	

5.2 Soil Sampling Plan and Methodology

The soil sampling plan and methodology adopted for this assessment is outlined in the table below:

Aspect	Input
Sampling	The NSW EPA Contaminated Sites Sampling Design Guidelines (1995 ¹³) recommend a
Density	sampling density for an environmental assessment based on the size of the investigation
	area. The guideline provides a minimum number of sampling points required for the
	investigation on a systematic sampling pattern.
	The guidelines recommend sampling from a minimum of 25 evenly spaced sampling points
	for this site with an area of approximately 15,000m.
	Samples for this investigation were obtained from 15 sampling points as shown on the
	attached Figure 2. This density is approximately 60% of the minimum sampling density
	recommended by the EPA.
Sampling Plan	The sampling locations were placed on a systematic plan with a grid spacing of
	approximately 30m between sampling locations. A systematic plan was considered suitable
	to address potential contaminants associated with the fill material.

Table 5-2: Soil Sampling Plan and Methodology	Table 5-2: Soil	Sampling Pla	an and Met	hodology
---	-----------------	--------------	------------	----------

¹³ NSW EPA, (1995), *Contaminated Sites Sampling Design Guidelines*. (referred to as EPA Sampling Design Guidelines 1995)

Aspect	Input
Exclusion	Sampling was not undertaken in inaccessible areas of the site such as beneath existing
Areas	buildings. Sampling was not undertaken from the stockpile located in the south west part of
(Data Gaps)	the site. These areas have been excluded from the investigation.
Sampling	Soil samples were obtained on 30/1/17, 31/1/17 and 1/2/17 in accordance with the standard
Equipment	sampling procedure (SSP) attached in the appendices.
	Sampling locations were set out using a tape measure. In-situ sampling locations were
	cleared for underground services by an external contractor prior to sampling as outlined in the SSP.
	The sample locations were drilled using the following equipment as shown on the borehole logs attached in the appendices:
	• Hydraulically operated drill rig equipped with spiral flight augers. Soil samples were obtained from a Standard Penetration Test (SPT) sampler or directly from the auger when conditions did not allow use of the SPT sampler; and
	Hand equipment in hard to access areas.
Sampling Collection and Field QA/QC	Soil samples were collected from the fill and natural profiles based on field observations. The sampling depths are shown on the logs attached in the appendices.
	Additional samples were obtained when relatively deep fill (>0.5m) was encountered. Samples were also obtained when there was a distinct change in lithology or based on the observations made during the investigation.
	During sampling, soil at selected depths was split into primary and duplicate samples for field QA/QC analysis.
	Samples were placed in glass jars with plastic caps and teflon seals with minimal headspace. Samples for asbestos analysis were placed in zip-lock plastic bags.
	Sampling personnel used disposable nitrile gloves during sampling activities. The samples were labelled with the job number, sampling location, sampling depth and date in accordance with the SSP.
Field PID Screening for	A portable Photoionisation Detector (PID) was used to screen the samples for the presence of VOCs and to assist with selection of samples for hydrocarbon analysis.
VOCs	The constitution of the DID is dependent on the events converse development of the USE
	mixtures of hydrocarbons. Some compounds give relatively high readings and some can be undetectable even though present in identical concentrations. The portable PID is best used
	semi-quantitatively to compare samples contaminated by the same hydrocarbon source.
	The PID is calibrated before use by measurement of an isobutylene standard gas. All the PID measurements are quoted as parts per million (ppm) isobutylene equivalents.

Aspect	Input	
	PID screening for VOCs was undertaken on soil samples using the soil sample headspace	
	method. VOC data was obtained from partly filled zip-lock plastic bags following	
	equilibration of the headspace gases.	
Desentensi	The dependencies time are adjusted during convolution is sufficient in the CCD	
nation and	The decontamination procedure adopted during sampling is outlined in the SSP.	
Sample	Where applicable, the sampling equipment was decontaminated using a scrubbing brush and	
Preservation	potable water and Decon 90 solution (phosphate free detergent) followed by rinsing with potable water.	
	Soil samples were preserved by immediate storage in an insulated sample container with ice	
	in accordance with the SSP.	
	On completion of the fieldwork, the samples were delivered in the insulated sample container to a NATA registered laboratory for analysis under standard COC procedures.	

5.3 <u>Analytical Schedule</u>

The analytical schedule is outlined in the following table:

Table 5-3: Analytical Schedule			
CoPC	Fill Samples	Natural Soil Samples	
Heavy Metals	18	6	
neavy metals	10	Ū	
TRH/BTEXN	18	6	
PAHs	18	6	
OCPs/OPPs	16	Na	
PCBs	16	Na	
Asbestos	18	Na	
pH/CEC/Clay Content (%)	2	Na	
TCLP Metals	2	Na	
TCLP PAHs	2	Na	
Asbestos in Fibre Cement	1	Na	
Fragments (FCF)			

5.3.1 <u>Laboratory Analysis</u>

The samples were analysed by the NATA Accredited laboratory/s using the analytical methods detailed in Schedule B(3) of NEPM 2013. Reference should be made to the laboratory reports attached in the appendices for further details.

Table 5-4: Laboratory Details

Samples	Laboratory	Report Reference
All primary samples and field QA/QC samples including (intra-laboratory duplicate and trip blank sample)	Envirolab Services Pty Ltd NSW, NATA Accreditation Number – 2901 (ISO/IEC 17025 compliance)	161150 & 161150-A
Inter-laboratory duplicate	Envirolab Services Pty Ltd Perth, NATA Accreditation Number – 2901 (ISO/IEC 17025 compliance)	191644

6 SITE ASSESSMENT CRITERIA (SAC)

The SAC adopted for the assessment is outlined in the table below. The SAC has been derived from the NEPM 2013 and other guidelines as applicable. The guideline values for individual contaminants are presented in the attached report tables.

Table 6-1: SAC Adopted	for this	Investigation
------------------------	----------	---------------

Guideline	Applicability
Health Investigation Levels (HILs) (NEPM 2013)	The HIL-A criteria for 'residential with accessible soil' have been adopted for this assessment.
Health Screening Levels (HSLs) (NEPM 2013)	The HSL-A criteria for 'residential with accessible soil' have been adopted for this assessment.
Ecological Assessment Criteria (EAC)	The EAC criteria for 'urban residential and public open space (URPOS)' exposure setting have been adopted.
(NEPM 2013)	 The EILs for selected metals have been derived as follows: The ABC values for high traffic (25th percentiles) areas for old suburbs of NSW published in Olszowy et. al. (1995¹⁴) has been adopted for this assessment; and Selected fill samples obtained from the surficial profile (<2m) across the site were analysed for pH, CEC and clay content. The average pH, CEC and clay content values were used to calculate the ACL.
Management Limits for TRH	These guidelines have only been used after considering the relevant HSLs and ESLs for adverse effects of TRH contamination where necessary.
Asbestos in Soil	The 'presence/absence' of asbestos in soil has been adopted as the assessment criterion for the Preliminary Site Investigation (PSI).
Waste Classification (WC) Criteria	The criteria outlined in the NSW EPA Waste Classification Guidelines - Part 1: Classifying Waste (2014 ¹⁵) has been adopted to classify the material for off-site disposal.
	Waste classified as 'hazardous' in accordance with the Waste Classification Guidelines 2014 due to high levels of contaminants is generally not suitable for disposal to a

¹⁴ Olszowy, H., Torr, P., and Imray, P., (1995), *Trace Element Concentrations in Soils from Rural and Urban Areas of Australia. Contaminated Sites Monograph Series No. 4*. Department of Human Services and Health, Environment Protection Agency, and South Australian Health Commission.

¹⁵ NSW EPA, (2014), *Waste Classification Guidelines, Part 1: Classifying Waste.* (referred to as Waste Classification Guidelines 2014)

Guideline	Applicability		
	landfill in NSW without treatment. However, if the contaminants are 'immobilised' so		
	that they will not be released into the landfill leachate at levels of concern, then the		
	EPA may grant an immobilisation approval to enable the waste to be landfilled. The		
	immobilisation approvals are issued by the EPA under the Protection of the		
	Environment Operations (Waste) Regulation 2014. The following approvals will be		
	adopted if necessary:		
	 Approval 1999/05 - Ash, Ash-contaminated natural excavated materials or coal-contaminated natural excavated material; and 		
	 Approval 2009/07 - Metallurgical furnace slag or metallurgical furnace slag contaminated natural excavated materials. 		

7 INVESTIGATION RESULTS

7.1 <u>Subsurface Conditions</u>

A summary of the subsurface conditions encountered during the investigation is presented in the table below. Reference should be made to the borehole logs attached in the appendices for further details.

Profile	Description (m in bgl)
Pavement	Asphaltic Concrete (AC) pavement was encountered in BH102, BH105, and BH106-BH113
	at the ground surface of varying thickness between 30mm to 100mm.
Fill	Fill material was encountered at the surface or beneath the pavement in all boreholes
	and extended to depths of approximately 0.1m to 2.4m. BH115 was terminated in the fill
	at a maximum depth of approximately 0.25m.
	The fill typically comprised of: silty clay; sandy clay; silty sand; gravelly silty sand and
	clayey silty sand. The fill contained inclusions of: ash; slag; sandstone gravel; igneous
	gravel; ironstone gravel; root fibres, ceramic fragments and glass.
Natural Soil	Natural sandy clay soils were encountered in BH109 and BH111 below the fill. The sandy
	clays contained inclusions of ironstone gravel.
Bedrock	Sandstone bedrock was encountered beneath the fill and/or natural soils in all boreholes
	(except BH115) at depths between 0.1m to 2.4m.
Groundwater	Groundwater seepage was not encountered in the boreholes during drilling. All
	boreholes remained dry on completion of drilling and a short time after.

Table 7-1: Summary of Subsurfac	e Conditions
---------------------------------	--------------

7.2 Field Screening

A summary of the field screening results are presented in the table below.

Table 7-2: Summary of Field Screening

Aspect	Details (m in bgl)
PID Screening of Soil Samples for VOCs	PID soil sample headspace readings are presented in attached report tables and the COC documents attached in the appendices. All results were 0 ppm equivalent isobutylene which indicates a lack of PID detectable VOCs.

7.3 <u>Soil Laboratory Results</u>

The soil laboratory results are compared to the relevant SAC in the attached report tables. A summary of the results assessed against the SAC is presented below.

Table 7-3: Summary	of Soil	Laboratory	Results
--------------------	---------	------------	---------

Analyte	Results Compared to SAC			
Heavy Metals	HILS: The lead result of 800mg/kg in the BH114 (1.5-1.95m) sample was above the HIL-A criteria of 300mg/kg. A laboratory replicate result of 1,500mg/kg for lead in the BH114 (1.5-1.95m) sample was above the HIL-A criteria of 300mg/kg. A subsequent triplicate sample was analysed for lead from the BH114 (1.5-1.95m) sample with the result of 2,000mg/kg being above the HIL-A criteria of 300mg/kg. The lead elevations within the BH114 (1.5-1.95m) sample are above 250% of the HIL-A criterion. All remaining heavy metal results were below the HIL-A criteria.			
	ElLs: Elevated concent outlined below:	rations of individual metals were er	acountered above	e the EIL-URPOS as
	Analyte	Sample & Concentration	Description	EIL
	Zinc	BH109 (0.05-0.2m) - 1,600mg/kg	Fill: silty sand	777
		BH114 (1.5-1.95m)* - 920mg/kg	Fill: sandy clay	
	Copper	BH114 (1.5-1.95m)* - 270mg/kg	Fill: sandy clay	228
	Lead	BH114 (1.5-1.95m)* - 2,000mg/kg	Fill: sandy clay	1,204
TRH	* - Triplicate result <u>WC:</u> Two fill samples triplicate for one concentration ab nickel concentrat were less than the analysed for the results <u>HSLs:</u>	ts adopted due to a higher concentrat encountered lead concertations abo e of the elevated fill samples, BH11 ove the SCC1 criteria of 1,500mg/kg ion above the CT1 criteria of 40mg/k ne CT1 criteria. TCLP leachates were elevant metals. The results were all le	ion ve the CT1 crite 14 (1.5-1.95m), e . The same triplic g. All remaining e prepared from ss than the TCLP1	ria of 100mg/kg. A incountered a lead cate encountered a heavy metal results these samples and criteria.
	All TRH results we ESLs: All TRH results we <u>WC:</u> All TRH results we	ere below the HSL-A criteria. Fore below the ESL-URPOS criteria. Fore less than the relevant CT1 criteria.		
BTEXN	HSLs: All BTEXN results	were below the HSL-A criteria.		

Analyte	Results Compared to SAC
	ESLs: All BTEXN results were below the ESL-URPOS criteria. <u>WC:</u> All BTEX results were less than the relevant CT1 criteria.
PAHs	HILS: All PAH results were below the HIL-A criteria. HSLs: All naphthalene results were below the HSL-A criteria. ESLs: The benzo(a)pyrene results of 0.86mg/kg and 1.5mg/kg in the BH101 (0.1-0.2m) and BH109 (0.05-0.2m) samples respectively were above the ESL-URPOS criteria of 0.7mg/kg. All remaining benzo(a)pyrene were below the ESL-URPOS criteria. EILS: All naphthalene results were below the EIL-URPOS criteria. EUS: The benzo(a)pyrene results of 0.86mg/kg and 1.5mg/kg in the BH101 (0.1-0.2m) and BH109 (0.05-0.2m) samples respectively were above the CT1 criteria of 0.8mg/kg. All remaining PAH results were less than the relevant CT1 criteria. TCLP leachates were prepared from the elevated samples and analysed for PAHs. The results were less than the TCLP1 criteria.
OCPs & OPPs	HILs: All OCP and OPP results were below the HIL-A criteria. EILs: All DDT results were below the EIL-URPOS criteria. WC: All OCP and OPP results were less than the relevant CT1 criteria.
PCBs	HILs: All PCB results were below the HIL-A criterion. WC: All PCB results were less than the CT1 criteria.
Asbestos	Asbestos was not detected in the soil samples analysed for the investigation. Chrysotile asbestos was detected in material sample GFF1 encountered on the ground surface towards the south east part of the site. Chrysotile and Amosite asbestos fibres were detected in the

Analyte	Results Compared to SAC
	ASB1 material sample encountered in a similar location during the EIS 2014 investigation.

8 DATA QUALITY ASSESSMENT

As part of the data quality assessment the following data quality indicators (DQIs) were assessed: precision, accuracy, representativeness, completeness and comparability as outlined in the table below. Reference should be made to the appendices for an explanation of the individual DQI.

Table 8-1: Assessment of DQIs

Completeness		

Field Considerations:

- The investigation was designed as a preliminary screening and sampling was confined to accessible areas of the site (see Figure 2);
- Samples were obtained from various depths based on the subsurface conditions encountered at the sampling locations. All samples were recorded on the borehole logs. All sampling points are shown on the attached Figure 2;
- The investigation was undertaken by trained staff in accordance with the SSP; and
- Documentation maintained during the field work is attached in the appendices where applicable.

Laboratory Considerations:

- Selected samples were analysed for a range of CoPC;
- All samples were analysed by NATA registered laboratories in accordance with the analytical methods outlined in NEPM 2013;
- Appropriate analytical methods and PQLs were used by the laboratories; and
- Appropriate sample preservation, handling, holding time and COC procedures were adopted for the investigation.

Comparability

Field Considerations:

- The investigation was undertaken by trained staff in accordance with the SSP;
- The climate conditions encountered during the field work were noted on the site description record maintained in the job file; and
- Consistency was maintained during sampling in accordance with the SSP.

Laboratory Considerations:

- All samples were analysed in accordance with the analytical methods outlined in NEPM 2013;
- Appropriate PQLs were used by the laboratory/s for all analysis (other than those outlined above);
- All primary, intra-laboratory duplicates and other QA/QC samples were analysed by the same laboratory; and
- The same units were used by the laboratory/s for all of the analysis.

Representativeness

Field Considerations:

• The investigation was designed to obtain appropriate media encountered during the field work as

outlined in the SAQP. Groundwater, dust and/or vapour sampling was outside the scope of this assessment; and

• All media based on the subsurface conditions encountered during the field work was sampled.

Laboratory Considerations:

• All samples were analysed in accordance with the SAQP.

Precision

Field Considerations:

• The investigation was undertaken in accordance with the SSP.

Laboratory Considerations:

- Analysis of field QA/QC samples including inter and intra-laboratory duplicates, trip blanks (TB) as outlined below;
- The field QA/QC frequency adopted for the investigation is outlined below;
- Calculation of the Relative Percentage Difference (RPD) from the primary and duplicate results (the RPD calculation equation is outlined in the attached appendices);
- Assessment of RPD results against the acceptance criteria outlined in Section 5.1.

Intra-laboratory RPD Results:

Soil Samples at a frequency of 4% of the primary samples:

• Dup GF1 is a soil duplicate of primary sample BH114 (0-0.2m)

The intra-laboratory results are presented in the attached report tables. The results indicated that field precision was acceptable.

The RPD values for a range of individual PAHs were outside the acceptance criteria. Values outside the acceptable limits have been attributed to sample heterogeneity and the difficulties associated with obtaining homogenous duplicate samples of heterogenous matrices.

As both the primary and duplicate sample results were less than the SAC, the exceedances are not considered to have had an adverse impact on the data set as a whole.

Inter-laboratory RPD Results:

Soil Samples at a frequency of 4% of the primary samples:

• Dup GF2 is a soil duplicate of primary sample BH115 (0-0.2m)

The inter-laboratory results are presented in the attached report tables. The results indicated that field precision was acceptable.

Trip Blank (TB):

One soil TB was analysed for BTEX at a frequency of one blank per batch of volatiles. The results are presented in the attached report tables.

The results were all less than the PQLs.

Accuracy

Field Considerations:

• The investigation was undertaken in accordance with the SSP.

Laboratory Considerations:

- The analytical quality assessment adopted by the laboratories was in accordance with the NATA and NEPM 2013 requirements as outlined in the analytical reports;
- A review of the reports indicates the following comments noted by the laboratories:

<u>Envirolab Report 161150</u> – The laboratory RPD acceptance criteria was exceeded in one sample for chromium and one sample for copper, lead and nickel. Triplicate results were issued to account for this. Excessive sample volume was provided for asbestos analysis. A portion was sub-sampled according to laboratory procedures.

<u>Envirolab Report 161150-A</u> –A portion of the supplied sample was sub-sampled for asbestos analysis according to laboratory procedures.

9 WASTE CLASSIFICATION OF SOIL FOR OFF-SITE DISPOSAL

The waste classification of soil for off-site disposal is summarised in the following table:

Cite Future / Material Classification Dispacel Ontion			
	Classification	Disposal Option	
туре			
Fill material over southern section of the site (Area A on Figure 2) Fill material over	General Solid Waste (non- putrescible) (GSW) containing asbestos General Solid Waste (non-	A NSW EPA landfill licensed to receive the waste stream. The landfill should be contacted to obtain the required approvals prior to commencement of excavation. A NSW EPA landfill licensed to receive the waste	
remaining parts of the site	putrescible) (GSW)	stream. The landfill should be contacted to obtain the required approvals prior to commencement of excavation. Alternatively, the fill material is considered to be suitable for re-use on the subject site (only) provided it meets geotechnical and earthwork requirements.	
Fill material containing ash and slag in the vicinity of BH114	Fill material containing ash and slag with contaminant concentrations above the SCC criteria ¹ has been classified as General Solid Waste (non- putrescible) (GSW) based on the TCLP concentrations alone as outlined in the GAI 2009/07	The fill material classified under the GAI can only be disposed of to a NSW EPA landfill licensed to receive the waste stream. The landfill should be contacted to obtain the required approvals prior to commencement of excavation. Fill material containing ash contaminated material can only be disposed of to a NSW EPA licensed landfill with a leachate monitoring system. Treatment of this waste stream is not considered to be an economical option.	
Natural silty clay soil and sandstone bedrock	Virgin excavated natural material (VENM)	VENM is considered suitable for re-use on-site, or alternatively, the information included in this report may be used to assess whether the material is suitable for beneficial reuse at another site as fill material. Alternatively, the natural material can be disposed of as VENM to a facility licensed by the NSW EPA to receive the waste stream.	

Table 9-1: Waste Classification

10 TIER 1 RISK ASSESSMENT AND REVIEW OF PCSM

For a contaminant to represent a risk to a receptor, the following three conditions must be present:

- 1. Source The presence of a contaminant;
- 2. Pathway A mechanism or action by which a receptor can become exposed to the contaminant; and
- 3. Receptor The human or ecological entity which may be adversely impacted following exposure to contamination.

If one of the above components is missing, the potential for adverse risks is relatively low.

The assessment has identified the following contamination issues at the site:

Contaminant of	Receptor and Exposure	Discussion and Risk Rating
Primary	Pathway	
Concern		
(CoPC)		
Lead	Human Receptors:	An elevated lead concentration was encountered in one of the
	Dermal Contact,	samples above the SAC.
	ingestion and inhalation	
	via dust	EIS are of the opinion that the risk posed to human receptors is
		low to moderate and will require remediation and/or management.
		The groundwater at the site has not been analysed and it is unknown whether the groundwater has been impacted by lead. Although the TCLP result indicates that there is potential for lead to leach under acidic conditions the underlying sandstone bedrock in BH114 does not appear to have been impacted by lead.
Asbestos in FCF	Human Receptors: Inhalation of airborne asbestos fibres	The investigation encountered FCF containing asbestos on the ground surface in the south section of the site. During sampling the FCF were assessed to be in good conditions and could not be broken by hand pressure. Hence the material was assessed to be 'non-friable' based on field information.
		EIS are of the opinion that the risk posed to human receptors is low to moderate and will require remediation and/or management.
Copper, Lead,	Environmental	The CoPC were above the EAC adopted for this investigation
Zinc and B(a)P	Receptors:	and pose a risk to environmental receptors.

Table 10-1: Tier 1 Risk Assessment and Review of PCSM

Contaminant of Primary Concern (CoPC)	Receptor and Exposure Pathway	Discussion and Risk Rating
	Direct exposure to plants and animals	Environmental receptors on-site include proposed landscaped areas between buildings. Off-site receptors include surface water runoff into the golf course dam and Lane Cover River.
		EIS are of the opinion that the risk posed to on-site environmental receptors is moderate and will require remediation and/or management.

10.1 Source and Extent of Contamination

10.1.1 <u>Sources</u>

The source of the PAHs and heavy metals including lead in the fill samples is considered to be associated with the ash, coal and slag inclusions encountered in the fill matrix. The natural soil samples analysed below the fill profile were not impacted by the contaminants.

The asbestos fragments appeared to be confined to the surface of the south section of the site and could have been associated with potential illegal dumping or level filling of the site.

10.1.2 Known Extent

Based on a review of the field logs and the laboratory data, EIS are of the opinion that the soil contamination is confined to the fill material at the site. The fill ranges in depth from approximately 0.1m to 2.4m bgl as shown on the attached Figure 2.

10.1.3 <u>Unknown Extent</u>

Sampling was not undertaken in the densely vegetated steep sloped areas of the site including the southern section, north section, west section and between the carparks. Sampling was also not undertaken beneath the green keepers chemical store shed or the existing clubhouse.

10.1.4 <u>Hazardous Building Materials in Existing Buildings</u>

There is a possibility of the presence of hazardous building materials in the existing buildings at the site. This is considered to pose a relatively low risk to the receptors provided that the demolition works are undertaken in accordance with the relevant codes and standards.

10.1.5 <u>Groundwater</u>

The depth of groundwater or the condition of the groundwater at the site is unknown. In the event that groundwater seepage management or dewatering is required as part of the construction, dewatering and/or groundwater disposal approvals should be sought from the relevant authorities.

10.2 Fate and Transport of Contaminants

The potential fate and transport of CoPC identified at the site is summarised in the following table:

Table 10-2: Fate and	Transport of PCC/CoPC
----------------------	-----------------------

PCC/CoPC	Fate and Transport
Non-volatile contaminants including: lead and asbestos	With the exception of asbestos, non-volatile contaminants are predominantly confined to the soil and groundwater medium. The mobility of these contaminants varies depending on: the nature and type of contaminant present (e.g. leachability, viscosity etc.); soil type/porosity; surface water infiltration; groundwater levels; and the rate of groundwater movement.
	Presence of Ash and Slag
	Non-volatile contaminants associated with ash and slag waste (some heavy metals, heavy fraction PAHs, and sometimes heavy fraction TPHs) are bound within a relatively insoluble matrix. Slag and ash is usually formed as a by-product of combustion at high temperatures which 'locks in' the contaminants within the matrix. The transport of lead will depend on whether the lead compound is water soluble or not.
	Presence of Asbestos
	Asbestos cement fragments are not considered to be very mobile. If broken or crushed the fragments could release asbestos fibres into the atmosphere.
	A number of studies have found that soils effectively filter out asbestos fibres and retain them within the soil matrix. The studies concluded that there is no significant migration of asbestos fibres, either through soil or groundwater.
	Site Conditions
	Surface water has the potential to infiltrate into the subsurface at the subject site via garden beds, grassed areas, unlined water retention facilities etc. Surface water infiltration could increase the migration potential of certain contaminants. Excess surface water has the potential to run-off into the golf course dam and Lane Cover River.

10.3 Data Gaps

The assessment has identified the following data gaps:

• Areas beneath the existing buildings have not been included in the assessment;
Preliminary Stage 2 Environmental Site Assessment Chatswood Golf Club, Beaconsfield Road, Chatswood, NSW EIS Ref: E27168KFrpt

- Steep sloping areas of the site have not been investigated;
- The groundwater conditions at the site have not been assessed;
- The minimum sampling density recommended for a stage 2 ESA by the NSW EPA has not been met; and
- The presence of hazardous building materials in the existing buildings has not been assessed.

11 <u>CONCLUSION</u>

EIS consider that the report objectives outlined in **Section 1.2** have been addressed.

The decision statements specified in **Section 5.1** are addressed below:

Decision Statement	Decision Result
 Do any of the soil samples contain contamination concentrations above the SAC? 	Yes.
2. Was asbestos detected in any of the samples?	No asbestos was detected in any of the soil samples analysed. A fragment of asbestos cement was detected on the surface of the south section of the site.
3. Is further investigation necessary?	Yes.

EIS consider that the site can be made suitable for the proposed development provided that the following recommendations are implemented to address the data gaps and to characterise the risks:

- 1. Undertake an additional ESA to address the data gaps identified in **Section 10.3**;
- 2. Prepare a Remediation Action Plan (RAP) to outline remedial measures for the site;
- 3. Prepare a Validation Assessment (VA) report on completion of remediation; and
- 4. Undertake a Hazardous Materials Assessment (Hazmat) for the existing buildings prior to the commencement of demolition work.

In the event unexpected conditions are encountered during development work or between sampling locations that may pose a contamination risk, all works should stop and an environmental consultant should be engaged to inspect the site and address the issue.

11.1 <u>Regulatory Requirement</u>

The regulatory requirements applicable for the site are outlined in the following table:

0	, ,
Guideline	Applicability
Duty to Report	The requirement to notify the NSW EPA regarding site contamination should be assessed

Table 11-1: Regulatory Requirement

Guideline	Applicability
Contamination 2015 ¹⁶	once the results of the additional investigation work have been reviewed and a remedial strategy (if necessary) has been selected.
	Please note that in the event the recommendations for additional work and remediation/management are not undertaken, there may be justification to notify the EPA. EIS can be contacted for further advice regarding notification.
POEO Act 1997	Section 143 of the POEO Act 1997 states that if waste is transported to a place that cannot lawfully be used as a waste facility for that waste, then the transporter and owner of the waste are each guilty of an offence. The transporter and owner of the waste have a duty to ensure that the waste is disposed of in an appropriate manner.
Work Health and Safety Code of Practice 2011 ¹⁷	Sites contaminated with asbestos become a 'workplace' when work is carried out there and require a register and asbestos management plan.
Dewatering Consent	In the event groundwater is intercepted during excavation works, dewatering may be required. Council, NSW Office of Water (NOW) and other relevant approvals (from discharge authorities like Sydney Water etc.) should be obtained prior to the commencement of dewatering.

¹⁶ NSW Department of Environment and Climate Change, (2015), *Guidelines on the Duty to Report Contamination under the Contaminated Land Management Act 1997.* (referred to as Duty to Report Contamination 2015)

¹⁷ WorkCover NSW, (2011), WHS Regulation: Code of Practice – How to Manage and Control Asbestos in the Workplace.

12 LIMITATIONS

The report limitations are outlined below:

- EIS accepts no responsibility for any unidentified contamination issues at the site. Any unexpected problems/subsurface features that may be encountered during development works should be inspected by an environmental consultant as soon as possible;
- Previous use of this site may have involved excavation for the foundations of buildings, services, and similar facilities. In addition, unrecorded excavation and burial of material may have occurred on the site. Backfilling of excavations could have been undertaken with potentially contaminated material that may be discovered in discrete, isolated locations across the site during construction work;
- This report has been prepared based on site conditions which existed at the time of the investigation; scope of work and limitation outlined in the EIS proposal; and terms of contract between EIS and the client (as applicable);
- The conclusions presented in this report are based on investigation of conditions at specific locations, chosen to be as representative as possible under the given circumstances, visual observations of the site and immediate surrounds and documents reviewed as described in the report;
- Subsurface soil and rock conditions encountered between investigation locations may be found to be different from those expected. Groundwater conditions may also vary, especially after climatic changes;
- The investigation and preparation of this report have been undertaken in accordance with accepted practice for environmental consultants, with reference to applicable environmental regulatory authority and industry standards, guidelines and the assessment criteria outlined in the report;
- Where information has been provided by third parties, EIS has not undertaken any verification process, except where specifically stated in the report;
- EIS has not undertaken any assessment of off-site areas that may be potential contamination sources or may have been impacted by site contamination, except where specifically stated in the report;
- EIS accept no responsibility for potentially asbestos containing materials that may exist at the site. These materials may be associated with demolition of pre-1990 constructed buildings or fill material at the site;
- EIS have not and will not make any determination regarding finances associated with the site;
- Additional investigation work may be required in the event of changes to the proposed development or landuse. EIS should be contacted immediately in such circumstances;
- Material considered to be suitable from a geotechnical point of view may be unsatisfactory from a soil contamination viewpoint, and vice versa; and
- This report has been prepared for the particular project described and no responsibility is accepted for the use of any part of this report in any other context or for any other purpose.

LIST OF IN-TEXT TABLES

Table 1-1: Guidelines	2
Table 2-1: Site Identification	4
Table 4-1: Potential Contamination Sources/AEC and Contaminants of Potential Concern	8
Table 4-2: CSM	9
Table 5-1: DQOs – Seven Steps	11
Table 5-2: Soil Sampling Plan and Methodology	13
Table 5-3: Analytical Schedule	15
Table 5-4: Laboratory Details	16
Table 6-1: SAC Adopted for this Investigation	17
Table 7-1: Summary of Subsurface Conditions	19
Table 7-2: Summary of Field Screening	19
Table 7-3: Summary of Soil Laboratory Results	20
Table 8-1: Assessment of DQIs	23
Table 9-1: Waste Classification	26
Table 10-1: Tier 1 Risk Assessment and Review of PCSM	27
Table 10-2: Fate and Transport of PCC/CoPC	29
Table 11-1: Regulatory Requirement	31

IMPORTANT INFORMATION ABOUT THIS REPORT

These notes have been prepared by EIS to assist with the assessment and interpretation of this report.

The Report is based on a Unique Set of Project Specific Factors

This report has been prepared in response to specific project requirements as stated in the EIS proposal document which may have been limited by instructions from the client. This report should be reviewed, and if necessary, revised if any of the following occur:

- The proposed land use is altered;
- The defined subject site is increased or sub-divided;
- The proposed development details including size, configuration, location, orientation of the structures or landscaped areas are modified;
- The proposed development levels are altered, eg addition of basement levels; or
- Ownership of the site changes.

EIS/J&K will not accept any responsibility whatsoever for situations where one or more of the above factors have changed since completion of the assessment. If the subject site is sold, ownership of the assessment report should be transferred by EIS to the new site owners who will be informed of the conditions and limitations under which the assessment was undertaken. No person should apply an assessment for any purpose other than that originally intended without first conferring with the consultant.

Changes in Subsurface Conditions

Subsurface conditions are influenced by natural geological and hydrogeological process and human activities. Groundwater conditions are likely to vary over time with changes in climatic conditions and human activities within the catchment (e.g. water extraction for irrigation or industrial uses, subsurface waste water disposal, construction related dewatering). Soil and groundwater contaminant concentrations may also vary over time through contaminant migration, natural attenuation of organic contaminants, ongoing contaminating activities and placement or removal of fill material. The conclusions of an assessment report may have been affected by the above factors if a significant period of time has elapsed prior to commencement of the proposed development.

This Report is based on Professional Interpretations of Factual Data

Site assessments identify actual subsurface conditions at the actual sampling locations at the time of the investigation. Data obtained from the sampling and subsequent laboratory analyses, available site history information and published regional information is interpreted by geologists, engineers or environmental scientists and opinions are drawn about the overall subsurface conditions, the nature and extent of contamination, the likely impact on the proposed development and appropriate remediation measures.

Actual conditions may differ from those inferred, because no professional, no matter how qualified, and no subsurface exploration program, no matter how comprehensive, can reveal what is hidden by earth, rock and time. The actual interface between materials may be far more gradual or abrupt than an assessment indicates. Actual conditions in areas not sampled may differ from predictions. Nothing can be done to prevent the unanticipated, but steps can be taken to help minimise the impact. For this reason, site owners should retain the services of their consultants throughout the development stage of the project, to identify variances, conduct additional tests which may be needed, and to recommend solutions to problems encountered on site.

Assessment Limitations

Although information provided by a site assessment can reduce exposure to the risk of the presence of contamination, no environmental site assessment can eliminate the risk. Even a rigorous professional assessment may not detect all contamination on a site. Contaminants may be present in areas that were not surveyed or sampled, or may migrate to areas which showed no signs of contamination when sampled. Contaminant analysis cannot possibly cover every type of contaminant which may occur; only the most likely contaminants are screened.

Misinterpretation of Site Assessments by Design Professionals

Costly problems can occur when other design professionals develop plans based on misinterpretation of an assessment report. To minimise problems associated with misinterpretations, the environmental consultant should be retained to work with appropriate professionals to explain relevant findings and to review the adequacy of plans and specifications relevant to contamination issues.

Logs Should not be Separated from the Assessment Report

Borehole and test pit logs are prepared by environmental scientists, engineers or geologists based upon interpretation of field conditions and laboratory evaluation of field samples. Logs are normally provided in our reports and these should not be re-drawn for inclusion in site remediation or other design drawings, as subtle but significant drafting errors or omissions may occur in the transfer process. Photographic reproduction can eliminate this problem, however contractors can still misinterpret the logs during bid preparation if separated from the text of the assessment. If this occurs, delays, disputes and unanticipated costs may result. In all cases it is necessary to refer to the rest of the report to obtain a proper understanding of the assessment. Please note that logs with the 'Environmental Log' header are not suitable for geotechnical purposes as they have not been peer reviewed by a Senior Geotechnical Engineer.

To reduce the likelihood of borehole and test pit log misinterpretation, the complete assessment should be available to persons or organisations involved in the project, such as contractors, for their use. Denial of such access and disclaiming responsibility for the accuracy of subsurface information does not insulate an owner from the attendant liability. It is critical that the site owner provides all available site information to persons and organisations such as contractors.

Read Responsibility Clauses Closely

Because an environmental site assessment is based extensively on judgement and opinion, it is necessarily less exact than other disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. To help prevent this problem, model clauses have been developed for use in written transmittals. These are definitive clauses designed to indicate consultant responsibility. Their use helps all parties involved recognise individual responsibilities and formulate appropriate action. Some of these definitive clauses are likely to appear in the environmental site assessment, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to any questions.

REPORT FIGURES

E27168KF

ENVIRONMENTAL INVESTIGATION SERVICES

1

This plan should be read in conjunction with the EIS report.

LABORATORY SUMMARY TABLES

TABLE A SOIL LABORATORY RESULTS COMPARED TO HIL

										SOIL LABO	a in mg/kg u	Inless stated	d otherwise	HILS								
						HEAVY	METALS				P/	AHs			ORGANOCHL	ORINE PESTI	CIDES (OCPs)					
			Arconic	Cadmium	Chromium	Connor	Lood	Moreury	Nickol	Zinc	Total	B(a)P	НСВ	Endosulfan	Methoxychlor	Aldrin &	Chlordane	DDT, DDD	Heptachlor	Chlorpyrifos	TOTAL PCBs	ASBESTOS FIBRES
			Arsenic	Caulinum	VI ²	Copper	Leau	wiercury	NICKEI	ZIIIC	PAHs	TEQ ³				Dieldrin		& DDE				
PQL - Envirolab Ser	rvices		4	0.4	1	1	1	0.1	1	1	-	0.5	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	100
Site Assessment Cr	iteria (SAC) ¹		100	20	100	6000	300	40	400	7400	300	3	10	270	300	6	50	240	6	160	1	Detected/Not Detected
Sample Reference	Sample Depth	Sample Description																				
BH101	0.1-0.2	Fill: silty sand	5	LPQL	17	12	28	LPQL	8	41	8.5	1	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
BH102	0.1-0.2	Fill: clayey sand	LPQL	LPQL	9	8	20	LPQL	7	34	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
BH103	00.1	Fill: silty sand	LPQL	LPQL	20	23	99	0.1	10	93	0.3	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
BH104	0.0-0.1	Fill: silty sand	4	LPQL	11	22	53	0.2	8	81	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
BH104	1.5-1.95	Fill: silty clay	8	LPQL	18	6	31	LPQL	2	19	LPQL	LPQL	NA	NA	NA	NA	NA	NA	NA	NA	NA	Not Detected
BH105	0.1-0.2	Fill: silty sand	LPQL	LPQL	11	3	19	LPQL	1	12	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
BH106	0.05-0.3	Fill: sandy clay	6	LPQL	31	29	27	LPQL	28	49	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
BH107	0.05-0.2	Fill: silty sand	LPQL	LPQL	14	8	39	0.3	8	31	2.5	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
BH107	0.3-0.6	Sandstone	LPQL	LPQL	11	1	4	LPQL	LPQL	8	LPQL	LPQL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH108	0.05-0.2	Fill: gravelly silty sand	LPQL	LPQL	11	16	29	LPQL	1	21	0.3	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
BH109	0.05-0.2	Fill: silty sand	LPQL	LPQL	18	34	50	0.3	26	1600	15	2.2	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
BH109	0.8-1.1	Sandstone	LPQL	LPQL	11	6	31	LPQL	3	160	0.72	LPQL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH110	0.1-0.3	Fill: gravelly silty sand	LPQL	LPQL	14	5	17	LPQL	6	23	0.2	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
BH111	0.06-0.25	Fill: silty sand	LPQL	LPQL	11	6	31	LPQL	4	39	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
BH111	1.3-1.5	Sandy Clay	LPQL	LPQL	19	LPQL	12	LPQL	1	6	LPQL	LPQL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH112	0.1-0.3	Fill: gravelly silty sand	LPQL	LPQL	16	9	42	LPQL	10	40	0.51	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
BH112	1.5-1.95	Fill: sandy clay	LPQL	LPQL	6	7	66	LPQL	1	49	LPQL	LPQL	NA	NA	NA	NA	NA	NA	NA	NA	NA	Not Detected
BH112	2.7-3.0	Sandstone	LPQL	LPQL	6	4	22	LPQL	LPQL	51	LPQL	LPQL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH113	0.1-0.3	Fill: clayey silty sand	LPQL	LPQL	24	19	110	0.1	8	46	0.3	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
BH113	0.4-0.7	Sandstone	LPQL	LPQL	5	2	6	LPQL	LPQL	4	LPQL	LPQL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH114	0-0.2	Fill: silty clay	LPQL	LPQL	28	27	48	LPQL	18	71	1.2	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
BH114	1.5-1.95	Fill: sandy clay	12	1	19	57	800	LPQL	9	780	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
BH114 - Replicate	1.5-1.95	Fill: sandy clay	16	1	24	230	1500	LPQL	33	640	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH114 - Triplicate	1.5-1.95	Fill: sandy clay	19	2	41	270	2000	LPQL	49	920	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH114	2.7-3.0	Sandstone	LPQL	LPQL	6	LPQL	9	LPQL	LPQL	2	LPQL	LPQL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH115	0-0.2	Fill: silty sand	LPQL	LPQL	13	24	21	0.3	12	75	1.5	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
GFF1	-	Material	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Detected
Total Number of	Samples		26	26	26	26	26	26	26	26	24	24	16	16	16	16	16	16	16	16	16	19
Maximum Value			19	2	41	270	2000	0.3	49	1600	15	2.2	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	NC

Explanation:

1 - Site Assessment Criteria (SAC): NEPM 2013, HIL-A: 'Residential with garden/accessible soils; children's day care centers; preschools; and primary schools'

2 - The results are for Total Chromium which includes Chromium III and VI. For initial screening purposes, we have assumed that the samples contain only Chromium VI unless demonstrated otherwise by additional analysis. 3 - B(a)P TEQ - Benzo(a)pyrene Toxicity Equivalence Quotient has been calculated based on 8 carcinogenic PAHs and their Toxic Equivalence Factors (TEFs) outlined in NEPM 2013

Replicate - Laboratory replicate results have been adopted for anolytes with results above the SAC. Please see Envirolab Report 161150 for explannation

Triplicate - Laboratory triplicate results have been adopted for anolytes with results above the SAC. Please see Envirolab Report 161150 for explannation

Concentration above the SAC

Abbreviations:

PAHs: Polycyclic Aromatic Hydrocarbons B(a)P: Benzo(a)pyrene PQL: Practical Quantitation Limit LPQL: Less than PQL OPP: Organophosphorus Pesticides OCP: Organochlorine Pesticides PCBs: Polychlorinated Biphenyls

VALUE

UCL: Upper Level Confidence Limit on Mean Value HILs: Health Investigation Levels NA: Not Analysed NC: Not Calculated NSL: No Set Limit SAC: Site Assessment Criteria NEPM: National Environmental Protection Measure

					SOIL LABOI All data	TABLE B RATORY RESULTS CO a in mg/kg unless sta	DMPARED TO HSLs ated otherwise					
					C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene	PID ²
PQL - Envirola	ab Services				25	50	0.2	0.5	1	3	1	
HSL Land Use	Category ¹						RESIDEN	ITIAL WITH ACCESS	SIBLE SOIL			
Sample Reference	Sample Depth	Sample Description	Depth Category	Soil Category								
BH101 - Repl	0.1-0.2	Fill: silty sand	0m to < 1m	Sand	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
BH102	0.1-0.2	Fill: clayey sand	0m to < 1m	Sand	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
BH103	00.1	Fill: silty sand	0m to < 1m	Sand	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
BH104	0.0-0.1	Fill: silty sand	0m to < 1m	Sand	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
BH104	1.5-1.95	Fill: silty clay	1m to <2m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
BH105	0.1-0.2	Fill: silty sand	0m to < 1m	Sand	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
BH106	0.05-0.3	Fill: sandy clay	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
BH107	0.05-0.2	Fill: silty sand	0m to < 1m	Sand	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
BH107	0.3-0.6	Sandstone	0m to < 1m	Sand	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
BH108	0.05-0.2	Fill: gravelly silty sand	0m to < 1m	Sand	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
BH109	0.05-0.2	Fill: silty sand	0m to < 1m	Sand	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
BH109	0.8-1.1	Sandstone	0m to < 1m	Sand	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
BH110	0.1-0.3	Fill: gravelly silty sand	0m to < 1m	Sand	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
BH111	0.06-0.25	Fill: silty sand	0m to < 1m	Sand	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
BH111	1.3-1.5	Sandy Clay	1m to <2m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
BH112	0.1-0.3	Fill: gravelly silty sand	0m to < 1m	Sand	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
BH112	1.5-1.95	Fill: sandy clay	1m to <2m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
BH112	2.7-3.0	Sandstone	2m to <4m	Sand	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
BH113	0.1-0.3	Fill: clayey silty sand	0m to < 1m	Sand	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
BH113	0.4-0.7	Sandstone	0m to < 1m	Sand	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
BH114	0-0.2	Fill: silty clay	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
BH114	1.5-1.95	Fill: sandy clay	1m to <2m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
BH114	2.7-3.0	Sandstone	2m to <4m	Sand	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
BH115	0-0.2	Fill: silty sand	0m to < 1m	Sand	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
Total Numb	Total Number of Samples					24	24	24	24	24	24	24
Maximum V	alue				LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL

Explanation:

1 - Site Assessment Criteria (SAC): NEPM 2013

2 - Field PID values obtained during the investigation

Concentration above the SAC

VALUE

The guideline corresponding to the elevated value is highlighted in grey in the Site Assessment Criteria Table below

Abbreviations:

HSLs: Health Screening Levels NA: Not Analysed

NL: Not Limiting SAC: Site Assessment Criteria LPQL: Less than PQL NEPM: National Environmental Protection Measure

SITE ASSESSMENT CRITERIA

					C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene
PQL - Envirola	ab Services				25	50	0.2	0.5	1	3	1
HSL Land Use	Category ¹						RESIDEN	ITIAL WITH ACCESS	IBLE SOIL		
Sample	Sample	Sample Description	Depth	Soil Category							
Reference	Depth		Category	son category							
BH101 - Repli	0.1-0.2	Fill: silty sand	0m to < 1m	Sand	45	110	0.5	160	55	40	3
BH102	0.1-0.2	Fill: clayey sand	0m to < 1m	Sand	45	110	0.5	160	55	40	3
BH103	00.1	Fill: silty sand	0m to < 1m	Sand	45	110	0.5	160	55	40	3
BH104	0.0-0.1	Fill: silty sand	0m to < 1m	Sand	45	110	0.5	160	55	40	3
BH104	1.5-1.95	Fill: silty clay	1m to <2m	Clay	90	NL	1	NL	NL	310	NL
BH105	0.1-0.2	Fill: silty sand	0m to < 1m	Sand	45	110	0.5	160	55	40	3
BH106	0.05-0.3	Fill: sandy clay	0m to < 1m	Clay	50	280	0.7	480	NL	110	5
BH107	0.05-0.2	Fill: silty sand	0m to < 1m	Sand	45	110	0.5	160	55	40	3
BH107	0.3-0.6	Sandstone	0m to < 1m	Sand	45	110	0.5	160	55	40	3
BH108	0.05-0.2	Fill: gravelly silty sand	0m to < 1m	Sand	45	110	0.5	160	55	40	3
BH109	0.05-0.2	Fill: silty sand	0m to < 1m	Sand	45	110	0.5	160	55	40	3
BH109	0.8-1.1	Sandstone	0m to < 1m	Sand	45	110	0.5	160	55	40	3
BH110	0.1-0.3	Fill: gravelly silty sand	0m to < 1m	Sand	45	110	0.5	160	55	40	3
BH111	0.06-0.25	Fill: silty sand	0m to < 1m	Sand	45	110	0.5	160	55	40	3
BH111	1.3-1.5	Sandy Clay	1m to <2m	Clay	90	NL	1	NL	NL	310	NL
BH112	0.1-0.3	Fill: gravelly silty sand	0m to < 1m	Sand	45	110	0.5	160	55	40	3
BH112	1.5-1.95	Fill: sandy clay	1m to <2m	Clay	90	NL	1	NL	NL	310	NL
BH112	2.7-3.0	Sandstone	2m to <4m	Sand	110	440	0.5	310	NL	95	NL
BH113	0.1-0.3	Fill: clayey silty sand	0m to < 1m	Sand	45	110	0.5	160	55	40	3
BH113	0.4-0.7	Sandstone	0m to < 1m	Sand	45	110	0.5	160	55	40	3
BH114	0-0.2	Fill: silty clay	0m to < 1m	Clay	50	280	0.7	480	NL	110	5
BH114	1.5-1.95	Fill: sandy clay	1m to <2m	Clay	90	NL	1	NL	NL	310	NL
BH114	2.7-3.0	Sandstone	2m to <4m	Sand	110	440	0.5	310	NL	95	NL
BH115	0-0.2	Fill: silty sand	0m to < 1m	Sand	45	110	0.5	160	55	40	3

Preliminary Stage 2 Environmental Site Assessment Chatswood Golf Club, Beaconsfield Road, Chatswood E27168KFrpt

									9	SOIL LABORATOR All data i	TABLE RY RESULTS CC in mg/kg unles	E C DMPARED TO EI ss stated otherv	Ls AND ESLs vise										
Land Use Categor	/ ¹											URBAI	N RESIDENTIAL A	ND PUBLIC OP	PEN SPACE								
									AGED HEAV	Y METALS-EILs			EIL	_S					ESLs				
				рН	CEC (cmol _c /kg)	(% clay)	Arsenic	Chromium	Copper	Lead	Nickel	Zinc	Naphthalene	DDT	C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	>C ₁₆ -C ₃₄ (F3)	>C ₃₄ -C ₄₀ (F4)	Benzene	Toluene	Ethylbenzene	Total Xylenes	B(a)P
PQL - Envirolab Se	rvices			-	1	-	4	1	1	1	1	1	0.1	0.1	25	50	100	100	0.2	0.5	1	3	0.05
Ambient Backgrou	nd Concentra	ation (ABC) ²		-	-	-	NSL	8	18	104	5	77	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL
Sample Referenc	e Sample Depth	Sample Description	Soil Texture																				
BH101 - Replicate	0.1-0.2	Fill: silty sand	Coarse	8.35	13	11.5	5	17	12	28	8	41	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0.86
BH102	0.1-0.2	Fill: clayey sand	Coarse	8.35	13	11.5	LPQL	9	8	20	7	34	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL
BH103	00.1	Fill: silty sand	Coarse	8.35	13	11.5	LPQL	20	23	99	10	93	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0.08
BH104	0.0-0.1	Fill: silty sand	Coarse	8.35	13	11.5	4	11	22	53	8	81	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL
BH104	1.5-1.95	Fill: silty clay	Fine	8.35	13	11.5	8	18	6	31	2	19	LPQL	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL
BH105	0.1-0.2	Fill: silty sand	Coarse	8.35	13	11.5	LPQL	11	3	19	1	12	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL
BH106	0.05-0.3	Fill: sandy clay	Coarse	8.35	13	11.5	6	31	29	27	28	49	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL
BH107	0.05-0.2	Fill: silty sand	Coarse	8.35	13	11.5	LPQL	14	8	39	8	31	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0.2
BH107	0.3-0.6	Sandstone	Coarse	8.35	13	11.5	LPQL	11	1	4	LPQL	8	LPQL	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL
BH108	0.05-0.2	Fill: gravelly silty sand	Coarse	8.35	13	11.5	LPQL	11	16	29	1	21	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0.06
BH109	0.05-0.2	Fill: silty sand	Coarse	8.35	13	11.5	LPQL	18	34	50	26	1600	0.1	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	1.5
BH109	0.8-1.1	Sandstone	Coarse	8.35	13	11.5	LPQL	11	6	31	3	160	LPQL	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0.07
BH110	0.1-0.3	Fill: gravelly silty sand	Coarse	8.35	13	11.5	LPQL	14	5	17	6	23	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0.07
BH111	0.06-0.25	Fill: silty sand	Coarse	8.35	13	11.5	LPQL	11	6	31	4	39	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL
BH111	1.3-1.5	Sandy Clay	Fine	8.35	13	11.5	LPQL	19	LPQL	12	1	6	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	
BH112	0.1-0.3	Fill: gravelly silty sand	Coarse	8.35	13	11.5	LPQL	16	9	42	10	40	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0.07
BH112	1.5-1.95	Fill: sandy clay	Fine	8.35	13	11.5	LPQL	6	/	66	1	49	LPQL		LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL
BH112	2.7-3.0	Sandstone	Coarse	8.35	13	11.5	LPQL	5	4	110	LPQL	51	LPQL	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	
	0.1-0.5	Fill: Clayey Silty Sand	Coarse	0.33	12	11.5		24 E	19	6		40			LPQL	LPQL					LPQL		
вп113 вн114	0.4-0.7	Fill: silty clay	Eine	8 35	13	11.5		28	2	48	18	71			LPQL I POI						LPQL		0.2
	1 5-1 95	Fill: sandy clay	Fine	8 35	13	11.5	12	10	57	800	0	780											
BH114 - Replicate	1.5-1.95	Fill: sandy clay	Fine	8 35	13	11.5	16	24	230	1500	33	640	NA		ΝΔ	NA	NA	ΝΔ	ΝΔ	NA	ΝΔ	NA	NA
BH114 - Triplicate	1.5 1.55	Fill: sandy clay	Fine	8 35	13	11.5	19	41	270	2000	49	920	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH114 Hiplicate	2.7-3.0	Sandstone	Coarse	8.35	13	11.5	LPOL	6	LPOL	9	LPOL	2	LPOL	LPOL	LPOL	LPOL	LPOL	LPOL	LPOL	LPOL	LPOL	LPOL	LPOL
BH115	0-0.2	Fill: silty sand	Coarse	8.35	13	11.5	LPQL	13	24	21	12	75	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0.2
Total Number o	Samples			26	26	26	26	26	26	26	26	26	24	19	24	24	24	24	24	24	24	24	24
Maximum Value	imum Value 8.35 13 11.5 19 41 270 2000 49 1600 0.1 LPQL LPQL LPQL LPQL LPQL LPQL LPQL LPQ																						
<u>Explanation:</u> 1 - Site Assessmer 2 - ABC Values for Replicate - Labora Triplicate - Labora	nation: e Assessment Criteria (SAC): NEPM 2013 C Values for selected metals has been adopted from the published background concentrations presented in Olszowy et. al., (1995), Trace Element Concentrations in Soils from Rural and Urban New South Wales (the 25th percentile values for old suburbs with low traffic have been quoted) :ate - Laboratory replicate results have been adopted for anolytes with results above the SAC. Please see Envirolab Report 161150 for explannation :ate - Laboratory triplicate results have been adopted for anolytes with results above the SAC. Please see Envirolab Report 161150 for explannation																						

Concentration above the SAC	VALUE
The guideline corresponding to the elevated value is highligh	hted in grey in the EIL and ESL Assessment Crite
Abbreviations:	
EILs: Ecological Investigation Levels	UCL: Upper Level Con
B(a)P: Benzo(a)pyrene	ESLs: Ecological Scree
PQL: Practical Quantitation Limit	NA: Not Analysed

Land Use Category	/ ¹											URBAN	RESIDENTIAL A	ND PUBLIC OF	PEN SPACE								
						Clay Content			AGED HEAVY	METALS-EILs			EI	Ls					ESLs				
				рН	CEC (cmol _c /kg)	(% clay)	Arsenic	Chromium	Copper	Lead	Nickel	Zinc	Naphthalene	DDT	C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	>C ₁₆ -C ₃₄ (F3)	>C ₃₄ -C ₄₀ (F4)	Benzene	Toluene	Ethylbenzene	Total Xylenes	B(a)P
PQL - Envirolab Se	rvices			-	1	-	4	1	1	1	1	1	0.1	0.1	25	50	100	100	0.2	0.5	1	3	0.05
Ambient Backgrou	nd Concent	ration (ABC) ²		-	-	-	NSL	8	18	104	5	77	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL
Sample Reference	e Sample Depth	Sample Description	Soil Texture																				
BH101 - Replicate	0.1-0.2	Fill: silty sand	Coarse	8.35	13	11.5	100	408	228	1204	275	777	170	180	180	120	300	2800	50	85	70	105	0.7
BH102	0.1-0.2	Fill: clayey sand	Coarse	8.35	13	11.5	100	408	228	1204	275	777	170	180	180	120	300	2800	50	85	70	105	0.7
BH103	00.1	Fill: silty sand	Coarse	8.35	13	11.5	100	408	228	1204	275	777	170	180	180	120	300	2800	50	85	70	105	0.7
BH104	0.0-0.1	Fill: silty sand	Coarse	8.35	13	11.5	100	408	228	1204	275	777	170	180	180	120	300	2800	50	85	70	105	0.7
BH104	1.5-1.95	Fill: silty clay	Fine	8.35	13	11.5	100	408	228	1204	275	777	170		180	120	1300	5600	60	105	125	45	0.7
BH105	0.1-0.2	Fill: silty sand	Coarse	8.35	13	11.5	100	408	228	1204	275	777	170	180	180	120	300	2800	50	85	70	105	0.7
BH106	0.05-0.3	Fill: sandy clay	Coarse	8.35	13	11.5	100	408	228	1204	275	777	170	180	180	120	300	2800	50	85	70	105	0.7
BH107	0.05-0.2	Fill: silty sand	Coarse	8.35	13	11.5	100	408	228	1204	275	777	170	180	180	120	300	2800	50	85	70	105	0.7
BH107	0.3-0.6	Sandstone	Coarse	8.35	13	11.5	100	408	228	1204	275	777	170		180	120	300	2800	50	85	70	105	0.7
BH108	0.05-0.2	Fill: gravelly silty sand	Coarse	8.35	13	11.5	100	408	228	1204	275	777	170	180	180	120	300	2800	50	85	70	105	0.7
BH109	0.05-0.2	Fill: silty sand	Coarse	8.35	13	11.5	100	408	228	1204	275	777	170	180	180	120	300	2800	50	85	70	105	0.7
BH109	0.8-1.1	Sandstone	Coarse	8.35	13	11.5	100	408	228	1204	275	777	170		180	120	300	2800	50	85	70	105	0.7
BH110	0.1-0.3	Fill: gravelly silty sand	Coarse	8.35	13	11.5	100	408	228	1204	275	777	170	180	180	120	300	2800	50	85	70	105	0.7
BH111	0.06-0.25	Fill: silty sand	Coarse	8.35	13	11.5	100	408	228	1204	275	777	170	180	180	120	300	2800	50	85	70	105	0.7
BH111	1.3-1.5	Sandy Clay	Fine	8.35	13	11.5	100	408	818	1204	275	777	170	180	180	120	1300	5600	60	105	125	45	0.7
BH112	0.1-0.3	Fill: gravelly silty sand	Coarse	8.35	13	11.5	100	408	228	1204	275	777	170	180	180	120	300	2800	50	85	70	105	0.7
BH112	1.5-1.95	Fill: sandy clay	Fine	8.35	13	11.5	100	408	228	1204	275	777	170		180	120	1300	5600	60	105	125	45	0.7
BH112	2.7-3.0	Sandstone	Coarse	8.35	13	11.5	100	408	228	1204	275	777	170		180	120	300	2800	50	85	70	105	0.7
BH113	0.1-0.3	Fill: clayey silty sand	Coarse	8.35	13	11.5	100	408	228	1204	275	777	170		180	120	300	2800	50	85	70	105	0.7
BH113	0.4-0.7	Sandstone	Coarse	8.35	13	11.5	100	408	228	1204	275	777	170		180	120	300	2800	50	85	70	105	0.7
BH114	0-0.2	Fill: silty clay	Fine	8.35	13	11.5	100	408	228	1204	275	777	170		180	120	1300	5600	60	105	125	45	0.7
BH114	1.5-1.95	Fill: sandy clay	Fine	8.35	13	11.5	100	408	228	1204	275	777	170		180	120	1300	5600	60	105	125	45	0.7
BH114 - Replicate	1.5-1.95	Fill: sandy clay	Fine	8.35	13	11.5	100	408	228	1204	275	777											
BH114 - Triplicate	1.5-1.95	Fill: sandy clay	Fine	8.35	13	11.5	100	408	228	1204	275	777											
BH114	2.7-3.0	Sandstone	Coarse	8.35	13	11.5	100	408	818	1204	275	777	170		180	120	300	2800	50	85	70	105	0.7
BH115	0-0.2	Fill: silty sand	Coarse	8.35	13	11.5	100	408	228	1204	275	777	170		180	120	300	2800	50	85	70	105	0.7

teria Table below

onfidence Limit on Mean Value eening Levels

LPQL: Less than PQL SAC: Site Assessment Criteria NEPM: National Environmental Protection Measure

NC: Not Calculated NSL: No Set Limit ABC: Ambient Background Concentration

EIL AND ESL ASSESSMENT CRITERIA

										:	SOIL LABOR	ATORY RESU All d	JLTS COMPARE lata in mg/kg u	ED TO WASTE CL unless stated oth	ASSIFICATION GUIDE nerwise	LINES											
						HEAVY	METALS				P	AHs		OC/OP	PESTICIDES		Total			TRH				BTEX CO	MPOUNDS		
			Arsenic	Cadmium	Chromiur	m Copper	Lead	Mercury	Nickel	Zinc	Total PAHs	B(a)P	Total Endosulfans	Chloropyrifos	Total Moderately Harmful ²	Total Scheduled ³	PCBs	C ₆ -C ₉	C ₁₀ -C ₁₄	C ₁₅ -C ₂₈	C ₂₉ -C ₃₆	Total C ₁₀ -C ₃₆	Benzene	Toluene	Ethyl benzene	Total Xylenes	ASBESTOS FIBRES
PQL - Envirolab	Services		4	0.4	1	1	1	0.1	1	1	-	0.05	0.1	0.1	0.1	0.1	0.1	25	50	100	100	250	0.2	0.5	1	3	100
General Solid W	/aste CT1 ¹		100	20	100	NSL	100	4	40	NSL	200	0.8	60	4	250	<50	<50	650		NSL		10,000	10	288	600	1,000	-
General Solid W	/aste SCC1 ¹		500	100	1900	NSL	1500	50	1050	NSL	200	10	108	7.5	250	<50	<50	650		NSL		10,000	18	518	1,080	1,800	-
Restricted Solid	Waste CT2 ¹		400	80	400	NSL	400	16	160	NSL	800	3.2	240	16	1000	<50	<50	2600		NSL		40,000	40	1,152	2,400	4,000	-
Restricted Solid	Waste SCC2 ¹	1	2000	400	7600	NSL	6000	200	4200	NSL	800	23	432	30	1000	<50	<50	2600		NSL		40,000	72	2,073	4,320	7,200	-
Sample Refere	nce Sample Depth	Sample Description																									
BH101 - Replica	ite 0.1-0.2	Fill: silty sand	5	LPQL	17	12	28	LPQL	8	41	8.5	0.86	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
BH102	0.1-0.2	Fill: clayey sand	LPQL	LPQL	9	8	20	LPQL	7	34	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
BH103	00.1	Fill: silty sand	LPQL	LPQL	20	23	99	0.1	10	93	0.3	0.08	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
BH104	0.0-0.1	Fill: silty sand	4	LPQL	11	22	53	0.2	8	81	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	120	120	LPQL	LPQL	LPQL	LPQL	Not Detected
BH104	1.5-1.95	Fill: silty clay	8	LPQL	18	6	31	LPQL	2	19	LPQL	LPQL	NA	NA	NA	NA	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
BH105	0.1-0.2	Fill: silty sand	LPQL	LPQL	11	3	19	LPQL	1	12	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
BH106	0.05-0.3	Fill: sandy clay	6	LPQL	31	29	27	LPQL	28	49	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
BH107	0.05-0.2	Fill: silty sand	LPQL	LPQL	14	8	39	0.3	8	31	2.5	0.2	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
BH107	0.3-0.6	Sandstone	LPQL	LPQL	11	1	4	LPQL	LPQL	8	LPQL	LPQL	NA	NA	NA	NA	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	NA
BH108	0.05-0.2	Fill: gravelly silty sand	LPQL	LPQL	11	16	29	LPQL	1	21	0.3	0.06	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
BH109	0.05-0.2	Fill: silty sand	LPQL	LPQL	18	34	50	0.3	26	1600	15	1.5	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
BH109	0.8-1.1	Sandstone	LPQL	LPQL	11	6	31	LPQL	3	160	0.72	0.07	NA	NA	NA	NA	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	NA
BH110	0.1-0.3	Fill: gravelly silty sand	LPQL	LPQL	14	5	17	LPQL	6	23	0.2	0.07	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
BH111	0.06-0.25	Fill: silty sand	LPQL	LPQL	11	6	31	LPQL	4	39	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
BH111	1.3-1.5	Sandy Clay	LPQL	LPQL	19	LPQL	12	LPQL	1	6	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	NA
BH112	0.1-0.3	Fill: gravelly silty sand	LPQL	LPQL	16	9	42	LPQL	10	40	0.51	0.07	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
BH112	1.5-1.95	Fill: sandy clay	LPQL	LPQL	6	7	66	LPQL	1	49	LPQL	LPQL	NA	NA	NA	NA	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
BH112	2.7-3.0	Sandstone	LPQL	LPQL	6	4	22	LPQL	LPQL	51	LPQL	LPQL	NA	NA	NA	NA	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	
BH113	0.1-0.3	Fill: clayey silty sand	LPQL	LPQL	24	19	110	0.1	8	46	0.3	0.06	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
	0.4-0.7	Sandstone	LPQL	LPQL	5	2	0	LPQL	10	4	LPQL 1.2	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	NA Not Detected
	1 5 1 05	Fill: sandy clay	12	1	10	57	48		18	71				LPQL	LPQL				LPQL		LPQL						Not Detected
BH114 - Replica	1.J-1.95	Fill: sandy clay	16	1	24	230	1500		33	640	NA	NA		NA	LFQL NA	NA			NA		NA	NA		NA	NA	NA	NOT Detected
BH114 - Triplica	1 5-1 05	Fill: sandy clay	10	2	 	230	2000		<u>10</u>	920	NA	NA	ΝA	NΔ	NΔ	NΔ	NA	NA	NA	NA	ΝA	NA	NA	NA	NA	ΝA	NΔ
BH114	2 7-2 0	Sandstone			-+1		9			20				I POI	I POI	IPOI					IPOI					IPOI	ΝΔ
BH115	0-0.2	Fill: silty sand	LPOL	LPOL	13	24	21	0.3	12	75	1.5	0.2	LPOL	LPOI	LPOL	LPOL	LPOL	LPOL	LPOL	LPOL	LPOL	LPOL	LPOL	LPOL	LPOL	LPOL	Not Detected
GFF1	-	Material	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Detected
Total Numbe	r of samples		26	26	26	26	26	26	26	26	24	24	19	19	19	19	19	24	24	24	24	24	24	24	24	24	19
Maximum Va	lue		19	2	41	270	2000	0.3	49	1600	15	1.5	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	120	120	LPQL	LPQL	LPQL	LPQL	NC

Explanation:

- NSW EPA Waste Classification Guidelines, Part 1: Classifying Waste (2014)

- Assessment of Total Moderately Harmful pesticides includes: Dichlorovos, Dimethoate, Fenitrothion, Ethion, Malathion and Parathion

- Assessment of Total Scheduled pesticides include: HBC, alpha-BHC, gamma-BHC, beta-BHC, Heptachlor, Aldrin, Heptachlor Epoxide, gamma-Chlordane, alpha-chlordane, pp-DDE, Dieldrin, Endrin, pp-DDD, pp-DDT, Endrin Aldehyde Replicate - Laboratory replicate results have been adopted for anolytes with results above the SAC. Please see Envirolab Report 161150 for explannation

Triplicate - Laboratory triplicate results have been adopted for anolytes with results above the SAC. Please see Envirolab Report 161150 for explannation

Concentration above the CT1 Concentration above SCC1 Concentration above the SCC2

Abbreviations:

PAHs: Polycyclic Aromatic Hydrocarbons B(a)P: Benzo(a)pyrene PQL: Practical Quantitation Limit LPQL: Less than PQL PID: Photoionisation Detector PCBs: Polychlorinated Biphenyls

UCL: Upper Level Confidence Limit on Mean Value NA: Not Analysed NC: Not Calculated NSL: No Set Limit SAC: Site Assessment Criteria TRH: Total Recoverable Hydrocarbons

CT: Contaminant Threshold SCC: Specific Contaminant Concentration HILs: Health Investigation Levels NEPM: National Environmental Protection Measure BTEX: Monocyclic Aromatic Hydrocarbons

TABLE D

TABLE E SOIL LABORATORY TCLP RESULTS All data in mg/L unless stated otherwise

			Arsenic	Cadmium	Chromium	Lead	Mercury	Nickel	B(a)P
PQL - Envirolal	b Services		0.05	0.01	0.01	0.03	0.0005	0.02	0.001
TCLP1 - Gener	al Solid Waste	1	5	1	5	5	0.2	2	0.04
TCLP2 - Restric	cted Solid Was	te ¹	20	4	20	20	0.8	8	0.16
TCLP3 - Hazaro	dous Waste ¹		>20	>4	>20	>20	>0.8	>8	>0.16
Sample Reference	Sample Depth	Sample Description							
BH101	0.1-0.2	Fill: silty sand	NA	NA	NA	NA	NA	NA	LPQL
BH109	0.05-0.2	Fill: silty sand	NA	NA	NA	NA	NA	NA	LPQL
BH113	0.1-0.3	Fill: clayey silty sand	NA	NA	NA	0.04	NA	NA	NA
BH114	1.5-1.95	Fill: sandy clay	NA	NA	NA	1.4	NA	LPQL	NA
Total Numbe	er of samples		0	0	0	2	0	1	2
Maximum V	alue		LPQL	LPQL	LPQL	1.4	LPQL	LPQL	LPQL

Explanation:

1 - NSW EPA Waste Classification Guidelines, Part 1: Classifying Waste (2014)

General Solid Waste Restricted Solid Waste Hazardous Waste

Abbreviations:

PQL: Practical Quantitation Limit LPQL: Less than PQL B(a)P: Benzo(a)pyrene NC: Not Calculated NA: Not Analysed TCLP: Toxicity Characteristics Leaching Procedure

Preliminary Stage 2 Environmental Site Assessment Chatswood Golf Club, Beaconsfield Road, Chatswood E27168KFrpt

TABLE F SOIL INTRA-LABORATORY DUPLICATE RESULTS & RPD CALCULATIONS All results in mg/kg unless stated otherwise						
SAMPLE	ANALYSIS	Envirolab POI	INITIAL	REPEAT	MEAN	RPD %
Sample Ref = BH114 (0-0.2m)	Arsenic	4	LPQL	LPQL	NC	NC
Dup Ref = Dup GF1	Cadmium	0.4	LPQL	LPQL	NC	NC
	Chromium	1	28	18	23.0	43
Envirolab Report: 161150	Copper	1	27	35	31.0	26
	Lead	1	48	59	53.5	21
	Mercury	0.1	LPQL	LPQL	NC	NC
	Nickel	1	18	13	15.5	32
	Zinc	1	71	79	75.0	11
	Naphthalene	0.1	LPQL	LPQL	NC	NC
	Acenaphthylene	0.1	LPQL	LPQL	NC	NC
	Acenaphthene	0.1	LPQL	LPQL	NC	NC
	Fluorene	0.1	LPQL	LPQL	NC	NC
	Phenanthrene	0.1	LPQL	0.2	0.1	120
	Anthracene	0.1	LPQL	LPQL	NC	NC
	Fluoranthene	0.1	0.2	0.5	0.4	86
	Pyrene	0.1	0.2	0.5	0.4	86
	Benzo(a)anthracene	0.1	0.1	0.2	0.2	67
	Chrysene	0.1	0.1	0.2	0.2	67
	Benzo(b,j+k)fluoranthene	0.2	0.3	0.4	0.4	29
	Benzo(a)pyrene	0.05	0.2	0.3	0.3	40
	Indeno(123-cd)pyrene	0.1	LPQL	0.1	0.1	67
	Dibenzo(ah)anthracene	0.1	LPQL	LPQL	NC	NC
	Benzo(ghi)perylene	0.1	0.1	0.1	0.1	0
	Total OCPs	0.1	LPQL	LPQL	NC	NC
	Total OPPs	0.1	LPQL	LPQL	NC	NC
	Total PCBs	0.1	LPQL	LPQL	NC	NC
	TRH C ₆ -C ₁₀ (F1)	25	LPQL	LPQL	NC	NC
	TRH >C ₁₀ -C ₁₆ (F2)	50	LPQL	LPQL	NC	NC
	TRH >C ₁₆ -C ₃₄ (F3)	100	LPQL	110	80.0	75
	TRH >C ₃₄ -C ₄₀ (F4)	100	LPQL	LPQL	NC	NC
	Benzene	0.5	LPQL	LPQL	NC	NC
	Toluene	0.5	LPQL	LPQL	NC	NC
	Ethylbenzene	1	LPQL	LPQL	NC	NC
	m+p-xylene	2	LPQL	LPQL	NC	NC
	o-xylene	1	LPQL	LPQL	NC	NC

Explanation:

The RPD value is calculated as the absolute value of the difference between the initial and repeat results divided by the average value expressed as a percentage. The following acceptance criteria will be used to assess the RPD results: Results > 10 times PQL = RPD value <= 50% are acceptable Results between 5 & 10 times PQL = RPD value <= 75% are acceptable Results < 5 times PQL = RPD value <= 100% are acceptable If result is LPQL then 50% of the PQL is used for the calculation VALUE RPD Results Above the Acceptance Criteria Abbreviations: PQL: Practical Quantitation Limit **OCP: Organochlorine Pesticides** LPQL: Less than PQL **OPP: Organophosphorus Pesticides** NA: Not Analysed PCBs: Polychlorinated Biphenyls NC: Not Calculated TRH: Total Recoverable Hydrocarbons

Copyright Environmental Investigation Services

SOIL INTER-LABORATORY DUPLICATE RESULTS & RPD CALCULATIONS All results in mg/kg unless stated otherwise							
SAMPLE	ANALYSIS	Envirolab	Envirolab Perth	INITIAL	REPEAT	MEAN	RPD
Sample Ref - BH115 (0-0.2m)	Arsenic		PQL 1		3	2.5	/0
$\operatorname{Bef} = \operatorname{Dun} \operatorname{GE2}$	Cadmium	4	4			NC	NC
ap nei – Dap di z	Chromium	1	1	13	12	12.5	8
nvirolah Report: 161150	Copper	1	1	24	26	25.0	8
nvirolab Perth Report: 191644	Lead	1	1	24	20	21.5	5
	Mercury	0.1	0.1	03	03	03	0
	Nickel	1	1	12	12	12.0	0
	Zinc	1	1	75	72	73.5	4
	Naphthalene	0.1	0.1	LPQL	LPOL	NC	NC
	Acenaphthylene	0.1	0.1	LPQL	LPOL	NC	NC
	Acenaphthene	0.1	0.1	LPOL		NC	NC
	Fluorene	0.1	0.1	LPQL	LPQL	NC	NC
	Phenanthrene	0.1	0.1	LPOL	LPOL	NC	NC
	Anthracene	0.1	0.1	LPQL	LPQL	NC	NC
	Fluoranthene	0.1	0.1	0.2	0.2	0.2	0
	Pvrene	0.1	0.1	0.2	0.3	0.3	40
	Benzo(a)anthracene	0.1	0.1	0.1	0.1	0.1	0
	Chrysene	0.1	0.1	0.1	0.1	0.1	0
	Benzo(b,i+k)fluoranthene	0.2	0.2	0.3	0.4	0.4	29
	Benzo(a)pyrene	0.05	0.05	0.2	0.23	0.2	14
	Indeno(123-cd)pyrene	0.1	0.1	0.1	0.2	0.2	67
	Dibenzo(ah)anthracene	0.1	0.1	LPOL	LPOL	NC	NC
	Benzo(ghi)pervlene	0.1	0.1	0.1	0.2	0.2	67
	Total OCPs	0.1	0.1	LPQL	LPQL	NC	NC
	Total OPPs	0.1	0.1	LPQL	LPQL	NC	NC
	Total PCBs	0.1	0.1	LPQL	LPQL	NC	NC
	TRH C6-C10 (F1)	25	25	LPQL	LPQL	NC	NC
	TRH >C10-C16 (F2)	50	50	LPQL	LPQL	NC	NC
	TRH >C16-C34 (F3)	100	100	LPQL	LPQL	NC	NC
	TRH >C34-C40 (F4)	100	100	LPQL	LPQL	NC	NC
	Benzene	0.5	0.5	LPQL	LPQL	NC	NC
	Toluene	0.5	0.5	LPQL	LPQL	NC	NC
	Ethylbenzene	1	1	LPQL	LPQL	NC	NC
	m+p-xylene	2	2	LPQL	LPQL	NC	NC
	o-xvlene	1	1	IPOL	LPOL	NC	NC

Explanation:

The RPD value is calculated as the absolute value of the difference between the initial and repeat results divided by the average value expressed as a percentage. The following acceptance criteria will be used to assess the RPD results:

Results > 10 times PQL = RPD value <= 50% are acceptable

Results between 5 & 10 times PQL = RPD value <= 75% are acceptable

Results < 5 times PQL = RPD value <= 100% are acceptable

If result is LPQL then 50% of the PQL is used for the calculation

RPD Results Above the Acceptance Criteria

VALUE

Abbreviations:

PQL: Practical Quantitation Limit LPQL: Less than PQL

NA: Not Analysed

NC: Not Calculated

OCP: Organochlorine Pesticides OPP: Organophosphorus Pesticides PCBs: Polychlorinated Biphenyls TRH: Total Recoverable Hydrocarbons

Copyright Environmental Investigation Services

Preliminary Stage 2 Environmental Site Assessment Chatswood Golf Club, Beaconsfield Road, Chatswood E27168KFrpt

TABLE H SUMMARY OF FIELD QA/QC RESULTS					
	Enviro		TBS		
ANALYSIS			1/02/2017		
	mg/kg μg/L		mg/kg		
TRH C6-C10 (F1)	10	10	LPQL		
Benzene	1	1	LPQL		
Toluene	1	1	LPQL		
Ethylbenzene	1	1	LPQL		
m+p-xylene	2	2	LPQL		
o-xylene	1	1	LPQL		
Explanation: ^s Sample type (sand) BTEX concentrations in trip spikes are presented as % recovery Values above PQLs/Acceptance criteria VALUE					
<u>Abbreviations:</u> PQL: Practical Quantitation Limit LPQL: Less than PQL NA: Not Analysed		TB: Trip Blank TS: Trip Spike RS: Rinsate Sample			
NC: Not Calculated TRH: Total Recoverable Hydrocarbons					

REPORT APPENDICES

Appendix A: Site Information including Site History

Proposed Development Plans

Chatswood Golf Club Chatswood NSW

Option C August 2016

marchese partners

Views

marchesepartners

Perspective 4 Chatswood, NSW

Perspective 4 Chatswood, NSW

Perspective 1 Chatswood, NSW

Perspective 2 Chatswood, NSW

Perspective 3 Chatswood, NSW

Perspective 5 Chatswood, NSW

Floor Plans

marchesepartners

Ground Floor Chatswood, NSW

Basement 2 Chatswood, NSW

Development Study

4 / 5ST BUILDING		
	COMMUNAL	
	GFA (m2)	ILU GFA (m2)
LOWER GROUND	0	490
GROUND	0	1580
LEVEL 1	0	1580
LEVEL 2	0	1580
LEVEL 3	0	1580
TOTALS	0	6810
%		
5ST BUILDING B		
	COMMUNAL	
	GFA (m2)	ILU GFA (m2)
GROUND	0	1205
LEVEL 1	0	1205
LEVEL 2	0	1205
LEVEL 3	0	1205
LEVEL 4	0	1205
TOTALS	0	6025

GOLF CLUB / FACILITIES

	COMMUNAL	
	GFA (m2)	ILU GFA (m2)
GROUND	2000	0
		0
TOTALS	2000	0

ANCILLARY FACILITIES

	COMMUNAL	
	GFA (m2)	ILU GFA (m2)
GROUND	2000	0
		0
TOTALS	2000	0

Development Data -	CHATSWOOD	GOLF COURS	SE
OPTION C			
PROPOSED	1		
	COMMUNAL	ILU GFA (m2)	
	GFA (m2)	85% efficiancy	
4 / 5ST BUILDING A	0	5789	
5ST BUILDING B	0	5121	
GOLF CLUB / FACILITIES	2000	0	
ANCILLARY FACILITIES	2000	0	
TOTALS	4000	10910	
	14	910	
SITE AREA =	TBC	sqm	
TOTAL GFA =	14910	sqm	(approx)
TOTAL UNITS=	100		
PROPOSED FSR =	ТВС	:1	
NOTE:			
RESIDENTIAL GFA TOTALS E	ASED ON 85% EF	FICIANCY .	

Schedule of Car Parking				
Description				
Description				
Apartment Type	Parking Rate	Achieved / Provided	%	
ILU RESIDENT PARKING + VISITOR		120	43%	
CLUB + ANCILLARY		160	57%	
TOTAL PARKING PROPOSED		280	(approx)	
NOTE: ACCESSIBLE PARKING % & SIZES TO BE CONFIRMED WITH TRAFFIC ENGINEER.				

Development Studies Chatswood, NSW

Selected Site Photos

Photograph 1: Showing the asphaltic concrete car park lower level. Photograph taken facing south-west.

Photograph 2: Showing the asphaltic concrete car park upper level. Photograph taken facing south.

Photograph 3: Showing the lower level of the club house building. Photograph taken facing south-west.

Photograph 4: Showing the fill material beneath the club house.

Photograph 5: Showing the site sloping to the west. Photograph taken facing east.

Photograph6:Showingsandstone outcropping and thesiteslopingtothewest.Photograph taken facing north.

Appendix B: Borehole Logs

BOREHOLE LOG

Borehole No. 101 1 / 3

	Cli Pro	ent ojec	: ct:	WATE REDE	ERMA VEL(ARK OPN	CHAT: IENT C	SWOC DF CH	DD ATSWOOD GOLF CLUB				
	Lo	cat	ion:	BEAC	ONS	FIEL	_D RO	AD, Cł	HATSWOOD, NSW				
	Jo	b N	o .: 2	27168Z				Ме	thod: SPIRAL AUGER	R	.L. Sur	face:	~43.9 m
	Da	te:	30/1 _	/17				_		_ Da	atum:	AHD	
	Pla	ant	Туре	e: JK308		1	1	Lo	gged/Checked By: D.A.F./A.2	<u>Z.</u>		1	Γ
	Record	SAMF	PLES	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
DRY ON	COMPLETION F AUGERING				-	-			FILL: Silty sand, fine to medium grained, brown, traces of roots, fine to coarse grained igneous gravel and concrete fragments.	М			- GRASS COVER - - APPEARS POORLY TO - MODERATELY - COMPACTED
	00			N = 7 4,4,3	43-	- - 1-			FILL: Clayey sand, fine to coarse grained, brown and light brown, traces of fine to medium grained igneous gravel and fine to coarse grained sandstone gravel.				
naigei						-	*****	-	SANDSTONE: fine to coarse grained, light brown.	DW			LOW 'TC' BIT
					42 41 	2			REFER TO CORED BOREHOLE LOG				MODERATE TO HIGH RESISTANCE
					39 	5-							

CORED BOREHOLE LOG

	Cli Pro	en oje	it: ect:		WATE REDE\	RMARK CHATSWOOD /ELOPMENT OF CHATSWOO	DD G	OLF	CLUB		
	_0	ca	tion		BEACO	ONSFIELD ROAD, CHATSWC	OD,	NSW			
•	Jol	b١	No.:	271	68Z	Core Size:				R.L.	Surface: ~43.9 m
	Da	te:	: 30/	1/17	7	Inclination:	VER	TICA	L	Datu	m: AHD
	Pla	ant	Тур	e:	JK308	Bearing: N/	'A			Logo	ged/Checked By: D.A.F./A.Z.
			ô		6	CORE DESCRIPTION	5		POINT LOAD STRENGTH	DEFECT	DEFECT DETAILS
/ater	oss/Leve	arrel Lift	:L (m AHI	epth (m)	traphic Lo	Rock Type, grain characteristics, colour, structure, minor components.	/eatherin	trength		SPACING (mm)	Type, inclination, thickness, planarity, roughness, coating.
						START CORING AT 1.34m SANDSTONE: fine to coarse grained.	DW	<u>м</u> -н			- General
וו:42 הוסמתכפת מץ קוואו הוטופאסטומו, שבי			- 42	2-		orange brown and light grey, cross bedded at 20-30°.	D.W				
						SANDSTONE: fine to medium grained, light grey and light red brown, bedded at 10-15°.					- (3.71m) XWS, 0°, 15 mm.t
	40- - - - SANDS -<					SANDSTONE: fine to coarse grained, red brown and orange brown, bedded at 10-15°.		M			
	RETURN		38 -	6-							- - - - - - - - - - - - - - - -

CORED BOREHOLE LOG

Borehole No. 101 3 / 3

	Cli	en	t:		WATE	RMARK CHATSWOOD					
	Pro	oje	ct:						CLUB		
				074			OD,	N244			0
	Da [.]	D N to:	10.: 30/ [,]	27° 1/17	168Z ,	Core Size:	VER		.1	R.L. Datu	Surface: ~43.9 m
	Pla	ie. int	Tvp	e:	JK308	Bearing: N		1107	.	Logo	nn. And ned/Checked By: D.A.F./A.Z.
-			- 76			CORE DESCRIPTION			POINT LOAD	9:	DEFECT DETAILS
Vater	oss/Level	arrel Litt	kL (m AHD)	epth (m)	ŝraphic Log	Rock Type, grain characteristics, colour, structure, minor components.	Veathering	strength	STRENGTH INDEX I _s (50)	DEFECT SPACING (mm)	DESCRIPTION Type, inclination, thickness, planarity, roughness, coating.
ENT - V8.00.GLB Log J & K CORED BOREHOLE - MASTER 271682 CHATSWOOD.GPJ < <drawngfile>> 03/03/2017 11:42 Produced by gINT Professional, Developed by Jargel (Mater 2016) - Mater 2016 - Master 271682 CHATSWOOD.GPJ <<0.000 - 0.000</drawngfile>	LOSS			10- 11- 11-		SANDSTONE: fine to medium grained, light grey and grey, bedded at 10-15°.	Mea	M Stree	Image: constraint of the second se		Specific General
		(RIC	30 3HT		-						-

BOREHOLE LOG

Borehole No. 102 1 / 3

	CI	ient:		WATE	RMA	ARK	CHAT	swoo	D				
	Pr	ojec	t:	REDE	VEL	OPN ⊏IEI							
_			on:	BEAU		FIEL	D RO	AD, Cr			1 0	.	20.4
	Jo	od No ate: 3).: 2 30/1/	/168Z				INIE	INDA: SPIRAL AUGER	R D	.L. Sur atum:	AHD	~32.1 m
	Pla	ant 1	ype	 : JK308				Log	ged/Checked By: D.A.F./A.Z	Z.	atam	7418	
	_											er Pa)	
-roundwate	Record		LES	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classificatio	DESCRIPTION	Moisture Condition/ Meathering	Strength/ Rel Density	Hand Penetromete Readings (k	Remarks
Y ON					32 -			-	ASPHALTIC CONCRETE: 30mm.t	M	0.12		-
DR	COMPLE F AUGE				-	-			grained, light brown, with silt and traces γ of fine to medium grained igneous and				-
	00								SANDSTONE: fine to coarse grained,	DW	M - H		BIT RESISTANCE
					-	1-			REFER TO CORED BOREHOLE LOG				-
/ Datgel					31	-							-
eloped by					_	-							-
onal, Dev					-	-							-
- Professi					30	2-							-
d by gINT					_	-							-
Produced					-	-							- - -
17 11:42					-	- 3-							-
03/03/20					29-	-							-
gFile>>					_	-							
< <drawir< th=""><td></td><td></td><td></td><td></td><td>=</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td></drawir<>					=	-							_
OD.GPJ					28 -	4							-
HATSWO					-	-							-
7168Z CH					-	-							-
STER 2					-	- 5							-
OLE - MA					27 -	-							_
NUGERHO					_	-							-
gJ&K⊅					=	-							-
GLB Lo					26	6—							-
IT - V8.00					-	-							-
CURREN						-							-
JK LIB					_	-							-
С	OP	YRIGI	-T										

CORED BOREHOLE LOG

F	Clie Pro	ent: oject:		WATE REDE	RMARK CHATSWOOD	DD G	OLF	CLUB		
-						ЮВ,	11310			0.4
	JOR) NO.:	27	168Z 7	Core Size:				R.L.	Surrace: ~32.1 m
	Jai	(e: 30/	· 1/ 1	11/200	Inclination:		CHCA	L	Dati	
			Je.	JK300			1		LOQ	
Water	LOSS/LEVEI Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, structure, minor components.	Weathering	Strength		DEFECT SPACING (mm)	DESCRIPTION Type, inclination, thickness, planarity, roughness, coating. Specific General
		32		- - - - -	START CORING AT 0.65m					
NI Professional, Developed by Datgel		31-	1.		SANDSTONE: fine to coarse grained, orange brown. SANDSTONE: fine to medium grained, light grey and grey, bedded at 0-10°.	DW	M-H			
wingFile>> 03/03/2017 11:42 Produced by g	RETURN	30 - - 29 -	3.				M			
	OF CORING		4		SANDSTONE: fine to coarse grained, light orange brown and light grey bedded at 15-30°.					(4.03m) XWS, 0°, 10 mm.t (4.03m) XWS, 0°, 10 mm.t (4.03m) XWS, 0°, 5 mm.t (4.40m) XWS, 20°, 30 mm.t (4.40m) CS, 0°, 10 mm.t
-09 J & K CUREU BUREHULE - IMAS 100%	RETURN	27	5-		as above, but light red brown and light orange brown, bedded at 0-10°.		Н			(5.11m) J, 20°, Un, R
		26	6		as above, but orange brown and light grey, bedded at 10-30°.		M			(6.62m) Be, 0°

CORED BOREHOLE LOG

Borehole No. 102 3 / 3

Location: BEACONSFIELD ROAD, CHATSWOOD, NSW Job No.: 27168Z Core Size: R.L. Surface: ~3 Date: 30/1/17 Inclination: VERTICAL Plant Type: JK308	32.1 m
Job No.: 27168ZCore Size:R.L. Surface: ~3Date: 30/1/17Inclination: VERTICALDatum: AHDPlant Type: JK308Bearing: N/ALogged/Checked	32.1 m
Date: 30/1/17 Inclination: VERTICAL Datum: AHD Plant Type: JK308 Bearing: N/A Logged/Checked	
Plant Type: JK308 Bearing: N/A Logged/Checked	
	d By: D.A.F./A.Z.
CORE DESCRIPTION POINT LOAD DEFECT D	DETAILS
Image: Space of the sector	DESCRIPTION nclination, thickness, r, roughness, coating.
Image: Second	Omm.t , S, IS

BOREHOLE LOG

Borehole No. 103 1 / 3

Ci Pi Lo	lient: roject: ocation:	WATE REDE BEACO	RMA VEL(ARK OPM FIEL	CHAT: IENT C _D RO/	SWOC DF CH. AD, Cł	DD ATSWOOD GOLF CLUB HATSWOOD, NSW				
Jo	ob No.: 2	7168Z				Me	thod: SPIRAL AUGER	R	.L. Sur	face:	~35.7 m
Da	ate: 31/1/	17						D	atum:	AHD	
P	lant Type:	JK308				Lo	gged/Checked By: D.A.F./A.Z	Ζ.	1	1	I
Groundwater Record	SAMPLES	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
ORY ON ORVIEDBAN GERING			-	-		-	FILL: Silty sand, fine to medium grained, light brown, traces of fine to medium	DW	М		- MODERATE 'TC' BIT
COMBIE			- 35 — -	-			SANDSTONE: fine to coarse grained, red brown and light red brown.	XW - DW	EL - VL		VERY LOW RESISTANCE
5			-	1						-	-
6				-			REFER TO CORED BOREHOLE LOG		<u>М-Н</u>		
			- 34	- 2—	-						
0			-	-							-
			33 -	-3-	-						-
			-	-	-						- - - -
			32 -	-	-						-
			-	-	-						-
			31 -	-	-						
			-	-	-						-
0			30 -	- - 6 —	-						- - - - -
			-	-							- - - -
			29 -		-						

CORED BOREHOLE LOG

	CI Pr Lo	lien roje oca	nt: ect: tion:	:	WATE REDE\ BEAC(RMARK CHATSWOOD /ELOPMENT OF CHATSWOO DNSFIELD ROAD, CHATSWO	DD G DD,	OLF NSW	CLUB		
F	Jo	b l	No.:	27'	168Z	Core Size:				R.L.	Surface: ~35.7 m
	Da	ate	: 31/	1/17	7	Inclination:	VER		L	Datu	im: AHD
	PI	ant	t Typ	e:	JK308	Bearing: N	/A			Log	ged/Checked By: D.A.F./A.Z.
						CORE DESCRIPTION			POINT LOAD		DEFECT DETAILS
latar	oss\Level	arrel Lift	(L (m AHD)	epth (m)	iraphic Log	Rock Type, grain characteristics, colour, structure, minor components.	/eathering	trength		DEFECT SPACING (mm)	DESCRIPTION Type, inclination, thickness, planarity, roughness, coating.
by Datgel		B	2 - - - - - - - - -	1-		START CORING AT 1 27m	5	0			Specific General
y gin i Proressional, Developed	100% RETURN		- 34 -	2-		SANDSTONE: fine to coarse grained, red brown, orange brown and light grey, bedded at 15-20°.	DW	M			
1:43 Produced I	MPLETION		-		-	CORE LOSS 0.50m					
CHAISWOOD.GPJ_< <drawingfile>>_U3/U3/2017_1</drawingfile>	ON CO C		- - - - - - - -	3-		SANDSTONE: fine to medium grained, red brown orange brown and light grey, bedded at 10-15°.	DW	L-M			- - - - - - - - - - - - - -
	20% RETURN (BELOW 2.5M)		- 31 – -	5-		as above, but fine to coarse grained.					- - - - - - - -
II - V8.00.GLB LOG J& K COKEL BI			- 30 - -	6-		SANDSTONE: fine to medium grained, light grey and grey, bedded at 0-10°.	SW - FR	H			(5.45m) XWS, 0°, 90 mm.t (6.19m) Be, 10°, P, S (6.22m) J, 10° (6.25m) Be, 0° 10° (6.25m) Be, 5°, 10 mm.t. IS
	OP		29- -			as above, but fine to coarse grained.	SW	М			L (6.31m) Be, 5°, P, R, IS (6.32m) Be, 0°, P, S, IS

CORED BOREHOLE LOG

Borehole No. 103 3 / 3

	Clier Proie	nt: ect:		WATE	RMARK CHATSWOOD /ELOPMENT OF CHATSWOO	DD G	OLF	CLUB		
	-002	ation		BEACO	DNSFIELD ROAD, CHATSWC	OD,	NSW			
	Job	No.:	27	168Z	Core Size:				R.L.	Surface: ~35.7 m
1	Date	: 31/	1/17	7	Inclination:	VER	TICA	L	Datu	m: AHD
I	Plan	t Typ	e:	JK308	Bearing: N/	Ά			Logę	ged/Checked By: D.A.F./A.Z.
		Ô		D D	CORE DESCRIPTION			POINT LOAD STRENGTH	DEFECT	DEFECT DETAILS
Water	Loss/Level Barrel Lift	RL (m AHI	Depth (m)	Graphic Lo	Rock Type, grain characteristics, colour, structure, minor components.	Weathering	Strength	INDEX I°(20) н н -1 -0.3 м м -1 -0.3 ен -1 ен -0.3 еп -0.5 еп -0.3 еп -0.5 еп -0.3 еп -0.5 еп	SPACING (mm)	Type, inclination, thickness, planarity, roughness, coating. Specific General
 03/03/2017 11:43 Produced by gINT Professional. Developed by Datgel 20% 	RETURN (BELOW 2.5M)	28 - - - - - - - - - - - - - - - - - - -	8- 9- 10-		SANDSTONE: fine to coarse grained, light grey and grey, bedded at 0-10°.	SW	М			
168Z CHATSWOOD.GPJ < <drawingfile></drawingfile>		- 25 - -	11-				н			- - - - - - - - - - - - -
JK_LIB_CURRENT-V8.00.GLB LOG J&K CORED BOREHOLE - MASIEK 2/		24 - - - - - - - - - - - - - - - - - -	12-		END OF BOREHOLE AT 11.50 m					

BOREHOLE LOG

Borehole No. 104 1 / 1

C P	lier roje oca	nt: ect: tion	WATE REDE : BEAC		ARK OPM FIEI	CHAT: IENT C	SWOC DF CH AD. CH	DD ATSWOOD GOLF CLUB HATSWOOD, NSW				
			271687				, c.		P		faco:	~35 5 m
)ate	: 31/	1/17				IVIC		Di	atum:	AHD	55.5 m
P	lan	t Typ	be: JK308	3			Log	ged/Checked By: D.A.F./A.Z	Z.			
											, a)	
Groundwater Record	SAN		Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetromete Readings (kF	Remarks
RY ON				-	-			FILL: Silty sand, brown and light grey, trace of fine to medium grained sand.	D			 APPEARS MODERATELY COMPACTED
COMPL			N = 13 9,6,7	- 35 - - -	-			FILL: Silty clay, low to medium plasticity, light grey, red brown and orange brown, trace of fine grained sand and fine to coarse grained sandstone gravel.	MC <pl< td=""><td></td><td></td><td>-</td></pl<>			-
200				-	'.							
			N = 3 1,2,1	- 34 - 34	- - - -				MC>PL			- APPEARS POORLY - COMPACTED - - -
6 honor				33-	2-		-	SANDSTONE: fine to coarse grained, light orange brown and light grey.	DW	M - H	-	- MODERATE TO HIGH 'TC' - BIT RESISTANCE - - - MODERATE RESISTANCE
				-	-							-
				- - 32 -	3-					M - H		MODERATE TO HIGH RESISTANCE
0				-	4-			END OF BOREHOLE AT 4.00 m				_ 'TC' BIT REFUSAL
				31	5-	-						- - - - - - - -
				30	6-	-						
				29 -		-						-

BOREHOLE LOG

Borehole No. 105 1 / 1

	Cli	ent:	4.	WATE		ARK		SWOC					
	Lo	cati	t: on:	BEAC	ONS	FIEL	D RO	AD, CH	HATSWOOD GOLF CLOB				
	Jo	b No	b .: 2	7168Z				Me	thod: SPIRAL AUGER	R	.L. Sur	face:	~42.3 m
1	Da	te: 3	31/1/	/17						D	atum:	AHD	
F	Pla	int 1	Гуре	: JK308	;	1		Lo	gged/Checked By: D.A.F./A.Z	Ζ.	1	1	I
Groundwater	Record	SAMP		Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
	COMPLETION			N=SPT	42-			-	ASPHALTIC CONCRETE: 30mm.t FILL: Silty sand, fine to coarse grained, light brown, trace of fine to coarse grained sandstone gravel.				-
				4/ 0mm REFUSAL	-	-			SANDSTONE: fine to coarse grained, light orange brown and light grey.	DW	L-M M-H		LOW TO MODERATE 'TC' BIT RESISTANCE
B Log J & K AUGERHOLE - MASTER 27168Z CHATSWOOD.GPJ < <drawingfile>> 03/03/2017 11:43 Produced by gINT Professional. Developed by Dargel</drawingfile>					41 40 				END OF BOREHOLE AT 1.00 m				<pre></pre>
					36		-						- - - - - -

ENVIRONMENTAL LOG

Borehole No. 106 1/1

6

Client:	WATERMAR	RK CHATSV	VOOD				
Project:	PROPOSED	CHATSWO	OOD GOLF CLUB REDEVELO	PMENT			
Location:	BEACONSF		, CHATSWOOD, NSW				
Job No. E27	168KF	Meth	od: SPIRAL AUGER		R	.L. Surf	ace: N/A
Date: 1/2/17			JK308		D	atum:	
		Logg	jed/Checked by: G.F./M.D.				
Groundwater Record ES ASS SAL SAPLES	Field Tests Depth (m)	Graphic Log Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLET ION	0		ASPHALTIC CONCRETE: 50mm.t FILL: Sandy clay, low plasticity, brown, orange brown and grey, fine to medium grained sand, trace of fine to medium grained igneous, sandstone and ironstone gravel. SANDSTONE: fine to medium grained, light grey and yellow brown.	MC <pl DW</pl 	VL		VERY LOW TO LOW 'TC' BIT RESISTANCE
PYRIGHT	1- 1.5- 2- 2.5- 3						

ENVIRONMENTAL LOG

EIS Borehole No. 107

1/1

Client: Project:	WATEF	RMAF DSED	MARK CHATSWOOD SED CHATSWOOD GOLF CLUB REDEVELOPMENT								
Location: Job No. E27	BEACC	DNSF	IELD	ROAD Meth	od: SPIRAL AUGER	R	.L. Surfa	ace: N/A			
Date: 1/2/17	,			Logg	jed/Checked by: G.F./M.D.		D	atum:			
Groundwater Record ASS SAMPLES	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks		
DRY ON COMPLET ION		0	***		ASPHALTIC CONCRETE: 50mm.t FILL: Silty sand, fine to medium grained, brown and orange brown, with clay fines, trace of fine to medium grained igneous, sandstone and ironstone gravel. SANDSTONE: fine to medium grained, light grey, orange brown and red brown.	M	L-M		LOW TO MODERATE 'TC' BIT RESISTANCE		
PYRIGHT		1 1.5 2- 2.5 3			END OF BOREHOLE AT 0.8m						

ENVIRONMENTAL LOG

Environmental logs are not to be used for geotechnical purposes

Client: Project: Location:	WATE PROP BEAC	RMA OSEI ONSF	MARK CHATSWOOD DISED CHATSWOOD GOLF CLUB REDEVELOPMENT INSFIELD ROAD, CHATSWOOD, NSW									
Job No. E2 Date: 1/2/1	Job No. E27168KF Date: 1/2/17				Method: SPIRAL AUGER JK308				R.L. Surface: N/A Datum:			
Groundwater Record ES ASB SAPLES	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks			
DRY ON COMPLET ION		0		÷.	ASPHALTIC CONCRETE: 50mm.t FILL: Gravelly silty sand, fine to medium grained, light brown and orange brown, fine to coarse grained sandstone, trace of fine to medium grained igneous and ironstone gravel. SANDSTONE: fine to medium grained, light grey, yellow brown and orange brown.	M	VL		CRUSHED SANDSTONE VERY LOW TO LOW 'TC' BIT RESISTANCE			
		1 1.5 - 2 - 2.5 - 3 -			END OF BOREHOLE AT 0.8m							

108 1/1

ENVIRONMENTAL LOG

Borehole No. 109 1/1

6

Client:	WATERM	VATERMARK CHATSWOOD							
Project:	PROPOSE	ED CHATS	WOC	DD GOLF CLUB REDEVELO	PMENT				
Location:	BEACONS	3EACONSFIELD ROAD, CHATSWOOD, NSW							
Job No. E2 Date: 1/2/17	7168KF 7	Μ	etho	d: SPIRAL AUGER JK308		R D	.L. Surf atum:	ace: N/A	
		L	ogge	d/Checked by: G.F./M.D.					
Groundwater Record ES ASB SAL SAL	Field Tests Depth (m)	Graphic Log Unified	Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks	
DRY ON COMPLET ION	0.5		- F	ASPHALTIC CONCRETE: 50mm.t FILL: Silty sand, fine to medium grained, light brown, trace of clay, fine to medium grained igneous, sandstone and ironstone gravel.	Μ				
	N > 10 6,7,3/0mm REFUSAL	_		SANDY CLAY: medium to high plasticity, light brown, fine to medium grained sand, trace of fine to medium grained ironstone gravel and ash. SANDSTONE: fine to medium grained, light grey and red brown.	MC≈PL DW	Н		HIGH 'TC' BIT RESISTANCE	
OPYRIGHT	1.5 2.5			END OF BOREHOLE AT 1.1m				'TC' BIT REFUSAL	

ENVIRONMENTAL LOG

Borehole No. 110 1/1

EIS

Client: Project:	WATERN PROPOS	RMARK CHATSWOOD OSED CHATSWOOD GOLF CLUB REDEVELOPMENT ONSEIELD ROAD, CHATSWOOD, NSW								
Job No. E27	7168KF		Metl	nod: SPIRAL AUGER JK308		R	.L. Surf atum:	ace: N/A		
			Log	ged/Checked by: G.F./M.D.						
Groundwater Record ES ASS SAL SAL	Field Tests	Depth (m) Granhic Loo	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks		
DRY ON		0		ASPHALTIC CONCRETE: 100mm.t						
ION			-	FILL: Gravelly silty sand, fine to medium grained, orange brown and light brown, fine to medium grained sandstone gravel, trace of clay	М			SANDSTONE		
	0	0.5 -	-	SANDSTONE: fine to medium grained, yellow brown and light grey.	DW	M-H		HIGH 'TC' BIT RESISTANCE		
PYRIGHT		1- 1.5 2 2.5 3		END OF BOREHOLE AT 0.6m						

CONSULTING ENVIRONMENTAL ENGINEERS

ENVIRONMENTAL LOG

Borehole No. **111** 1/1

CONSULTING ENVIRONMENTAL ENGINEERS

ENVIRONMENTAL LOG

Borehole No. **112** 1/1

ENVIRONMENTAL INVESTIGATION SERVICES CONSULTING ENVIRONMENTAL ENGINEERS

ENVIRONMENTAL LOG

Environmental logs are not to be used for geotechnical purposes

Client: Project: Location:	WATERMA PROPOSE BEACONS	MARK CHATSWOOD SED CHATSWOOD GOLF CLUB REDEVELOPMENT DNSFIELD ROAD, CHATSWOOD, NSW								
Job No. E27	168KF	I	Meth	od: SPIRAL AUGER JK308		R	.L. Surf	ace: N/A		
Date: 1/2/17		I	Logg	ed/Checked by: G.F./M.D.		U	alum			
Groundwater Record ES ASB SAMPLES	Field Tests Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks		
DRY ON	0			ASPHALTIC CONCRETE: 90mm.t						
ION				FILL: Clayey silty sand, fine to medium grained, orange brown, light brown, with fine to coarse grained sandstone gravel, trace of fine to medium grained inneous gravel	М					
	0.5			SANDSTONE: fine to medium grained, red brown, light grey and orange brown.	DW	L		LOW 'TC' BIT RESISTANCE		
	1.5			END OF BOREHOLE AT 1.0m						
	2									
	2.5									
	3.5	3 2						-		

Borehole No. 113 1/1

ENVIRONMENTAL INVESTIGATION SERVICES CONSULTING ENVIRONMENTAL ENGINEERS

ENVIRONMENTAL LOG

Borehole No. 114 1/1

CONSULTING ENVIRONMENTAL ENGINEERS

ENVIRONMENTAL LOG

Borehole No. **115** 1/1

Client:	WATERMA	VATERMARK CHATSWOOD							
Project:	PROPOSE	CHATS	SWOOD GOI	-					
Location:	BEACONSI	FIELD RO	DAD, CHATS	SWOOD, NSW					
Job No. E27	168KF	N	lethod: HAN	ND AUGER		R	.L. Surf	ace: N/A	
Date: 1/2/1/		L	ogged/Chec	ked by: G.F./M.D.			atum:		
Groundwater Record ES ASB SAL SAL	Field Tests Depth (m)	Graphic Log	Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks	
DRY ON COMPLET ION	0		FILL: Silty grained, b medium g	sand, fine to medium rown, trace of fine to rained igneous gravel, and	D		-	GRASS COVER	
COPYRIGHT	0.5 - 1 - 1.5 - 2 - 2.5 - 3 - 3.5		END OF E	BOREHOLE AT 0.25m				HAND AUGER REFUSAL	

EXPLANATORY NOTES – ENVIRONMENTAL LOGS

INTRODUCTION

These notes have been provided to supplement the environmental report with regards to drilling and field logging. Not all notes are necessarily relevant to all reports. Where geotechnical borehole logs are utilised for environmental purpose, reference should also be made to the explanatory notes included in the geotechnical report. Environmental logs are not suitable for geotechnical purposes.

The ground is a product of continuing natural and manmade processes and therefore exhibits a variety of characteristics and properties which vary from place to place and can change with time. Environmental studies involve gathering and assimilating limited facts about these characteristics and properties in order to understand the ground on a particular site under certain conditions. These conditions are directly relevant only to the ground at the place where, and time when, the investigation was carried out.

DESCRIPTION AND CLASSIFICATION METHODS

The methods of description and classification of soils and rocks used in this report are based on Australian Standard 1726, the SAA Site Investigation Code. In general, descriptions cover the following properties – soil or rock type, colour, structure, strength or density, and inclusions. Identification and classification of soil and rock involves judgement and the Company infers accuracy only to the extent that is common in current geotechnical practice.

Soil types are described according to the predominating particle size and behaviour as set out in the attached Unified Soil Classification Table qualified by the grading of other particles present (e.g. sandy clay) as set out below (note that unless stated in the report, the soil classification is based on a qualitative field assessment, not laboratory testing):

Soil Classification	Particle Size
Clay	less than 0.002mm
Silt	0.002 to 0.075mm
Sand	0.075 to 2mm
Gravel	2 to 60mm

Non-cohesive soils are classified on the basis of relative density, generally from the results of Standard Penetration Test (SPT) as below:

Relative Density	SPT 'N' Value (blows/300mm)
Very loose	less than 4
Loose	4 – 10
Medium dense	10 – 30
Dense	30 – 50
Very Dense	greater than 50

Cohesive soils are classified on the basis of strength (consistency) either by use of hand penetrometer, laboratory testing or engineering examination. The strength terms are defined as shown in the following table:

Classification	Unconfined Compressive Strength kPa
Very Soft	less than 25
Soft	25 – 50
Firm	50 – 100
Stiff	100 – 200
Very Stiff	200 – 400
Hard	Greater than 400
Friable	Strength not attainable – soil crumbles

Rock types are classified by their geological names, together with descriptive terms regarding weathering, strength, defects, etc. Where relevant, further information regarding rock classification is given in the text of the report. In the Sydney Basin, 'Shale' is used to describe thinly bedded to laminated siltstone.

DRILLING OR EXCAVATION METHODS

The following is a brief summary of drilling and excavation methods currently adopted by the Company, and some comments on their use and application. All except test pits and hand auger drilling require the use of a mechanical drilling rig.

Test Pits: These are normally excavated with a backhoe or a tracked excavator, allowing close examination of the in-situ soils if it is safe to descend into the pit. The depth of penetration is limited to approximately 3m for a backhoe and up to 6m for an excavator. Limitations of test pits include problems associated with disturbance and difficulty of reinstatement; and the consequent effects on nearby structures. Care must be taken if construction is to be carried out near test pit locations to either properly re-compact the backfill during construction, or to design and construct the structure so as not to be adversely affected by poorly compacted backfill at the test pit location.

Hand Auger Drilling: A borehole of 50mm to 100mm diameter is advanced by manually operated equipment. Premature refusal of the hand augers can occur on a variety of materials such as fill, hard clay, gravel or ironstone, and does not necessarily indicate rock level.

Continuous Spiral Flight Augers: The borehole is advanced using 75mm to 115mm diameter continuous spiral flight augers, which are withdrawn at intervals to allow sampling and in-situ testing. This is a relatively economical means of drilling in clays and in sands above the water table. Samples are returned to the surface by the flights or may be collected after withdrawal of the auger flights, but they can be very disturbed and layers may become mixed. Information from the auger sampling (as distinct from specific sampling by SPTs or undisturbed samples) is of relatively lower reliability due to mixing or softening of samples by groundwater, or uncertainties as to the original depth of the samples. Augering below the groundwater table is of even lesser reliability than augering above the water table.

Rock Augering: Use can be made of a Tungsten Carbide (TC) bit for auger drilling into rock to indicate rock quality and continuity by variation in drilling resistance and from examination of recovered rock fragments. This method of investigation is quick and relatively inexpensive but provides only an indication of the likely rock strength and predicted values may be in error by a strength order. Where rock strengths may have a significant impact on construction feasibility or costs, then further investigation by means of cored boreholes may be warranted.

Wash Boring: The borehole is usually advanced by a rotary bit, with water being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from "feel" and rate of penetration.

Mud Stabilised Drilling: Either Wash Boring or Continuous Core Drilling can use drilling mud as a circulating fluid to stabilise the borehole. The term 'mud' encompasses a range of products ranging from bentonite to polymers such as Revert or Biogel. The mud tends to mask the cuttings and reliable identification is only possible from intermittent intact sampling (e.g. from SPT and U50 samples) or from rock coring, etc.

Continuous Core Drilling: A continuous core sample is obtained using a diamond tipped core barrel. Provided full core recovery is achieved (which is not always possible in very low strength rocks and granular soils), this technique provides a very reliable (but relatively expensive) method of investigation. In rocks, an NMLC triple tube core barrel, which gives a core of about 50mm diameter, is usually used with water flush. The length of core recovered is compared to the length drilled and any length not recovered is shown as CORE LOSS. The locations of losses are determined on site by the supervising engineer; where the location is uncertain, the loss is placed at the top end of the drill run.

Standard Penetration Tests: Standard Penetration Tests (SPT) are used mainly in non-cohesive soils, but can also be used in cohesive soils as a means of indicating density or strength and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289, "Methods of Testing Soils for Engineering Purposes" – Test F3.1.

The test is carried out in a borehole by driving a 50mm diameter split sample tube with a tapered shoe, under the impact of a 63kg hammer with a free fall of 760mm. It is normal for the tube to be driven in three successive 150mm increments and the 'N' value is taken as the number of blows for the last 300mm. In dense sands, very hard clays or weak rock, the full 450mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form:

- In the case where full penetration is obtained with successive blow counts for each 150mm of, say, 4, 6 and 7 blows, as: N = 13 (4, 6, 7)
- In a case where the test is discontinued short of full penetration, say after 15 blows for the first 150mm and 30 blows for the next 40mm, as: N>30 (15, 30/40mm)

The results of the test can be related empirically to the engineering properties of the soil. Occasionally, the drop hammer is used to drive 50mm diameter thin walled sample tubes (U50) in clays. In such circumstances, the test results are shown on the borehole logs in brackets.

A modification to the SPT test is where the same driving system is used with a solid 60 tipped steel cone of the same diameter as the SPT hollow sampler. The solid cone can be continuously driven for some distance in soft clays or loose sands, or may be used where damage would otherwise occur to the SPT. The results of this Solid Cone Penetration Test (SCPT) are shown as "Nc" on the borehole logs, together with the number of blows per 150mm penetration.

LOGS

The borehole or test pit logs presented herein are an interpretation of the subsurface conditions, and their reliability will depend to some extent on the frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will enable the most reliable assessment, but is not always practicable or possible to justify on economic grounds. In any case, the boreholes or test pits represent only a very small sample of the total subsurface conditions.

The attached explanatory notes define the terms and symbols used in preparation of the logs.

Interpretation of the information shown on the logs, and its application to design and construction, should therefore take into account the spacing of boreholes or test pits, the method of drilling or excavation, the frequency of sampling and testing and the possibility of other than "straight line"

variations between the boreholes or test pits. Subsurface conditions between boreholes or test pits may vary significantly from conditions encountered at the borehole or test pit locations.

GROUNDWATER

Where groundwater levels are measured in boreholes, there are several potential problems:

- Although groundwater may be present, in low permeability soils it may enter the hole slowly or perhaps not at all during the time it is left open;
- A localised perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes and may not be the same at the time of construction; and
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must be washed out of the hole or 'reverted' chemically if water observations are to be made.

More reliable measurements can be made by installing standpipes which are read after stabilising at intervals ranging from several days to perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from perched water tables or surface water.

FILL

The presence of fill materials can often be determined only by the inclusion of foreign objects (e.g. bricks, concrete, plastic, slag/ash, steel etc) or by distinctly unusual colour, texture or fabric. Identification of the extent of fill materials will also depend on investigation methods and frequency. Where natural soils similar to those at the site are used for fill, it may be difficult with limited testing and sampling to reliably determine the extent of the fill.

The presence of fill materials is usually regarded with caution as the possible variation in density, strength and material type is much greater than with natural soil deposits. If the volume and quality of fill is of importance to a project, then frequent test pit excavations are preferable to boreholes

LABORATORY TESTING

Laboratory testing has not been undertaken to confirm the soil classifications and rocks strengths indicated on the environmental logs unless noted in the report.

SITE ANOMALIES

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, EIS should be notified immediately.

GRAPHIC LOG SYMBOLS FOR SOIL AND ROCKS

<u></u>	Field Identification Procedures			Group		Information Required for	rmation Required for Laboratory Classification															
1	(Excluding part	icles larger t estim	than 75 µm and ated weights)	d basing fracti	ons on	Symbols	Typical Names	Describing Soils			Criteria											
	coarse than ze	n gravels le or no lnes)	Wide range i amounts o sizes	n grain size a of all interme	nd substantial diate particle	G#	Well graded gravels, gravel- sand mixtures, little or no fines	Give typical name; indicate approximate percentages of sand		grain size r than 75 s follows: use of	$C_{\rm U} = \frac{D_{60}}{D_{10}} \qquad \text{Greate}$ $C_{\rm C} = \frac{(D_{30})^2}{D_{10} \times D_{60}}$	than 4 Between I and 3										
	ivels alf of larger ieve si	Clear	Predominant with some	antly one size or a range of sizes ome intermediate sizes missing GP Poorly graded gravels, gravel- sand mixtures, little or no fines and hardness of the coarse	from g smalle ified as quiring	Not meeting all grada	ion requirements for GW															
s rial is size ^b ve)	Gra e than h iction is 4 mm s	s with es cciable nt of s)	Nonplastic fines (for identification pro- cedures see ML below) Plastic fines (for identification procedures, see CL below)		Nonplastic fines (for identificati cedures see ML below)		Nonplastic fines (for idea cedures see ML below)		ification pro-	GM	Silty gravels, poorly graded gravel-sand-silt mixtures	and other pertinent descriptive information; and symbols in parentheses	uo	id sand raction are class <i>W</i> , <i>SP</i> <i>M</i> , <i>SC</i> <i>M</i> , <i>SC</i> cases rec	Atterberg limits be "A" line, or PI than 4	ow Above "A" line ess with PI between 4 and 7 are barderline cases						
ined soil of mate im sieve	Mor	Gravel fine (appre amoun			GC	Clayey gravels, poorly graded gravel-sand-clay mixtures	For undisturbed soils add informa- tion on stratification, degree of compactness, cementation,	entificati	ravel ar f fines (f ed soils c, GP, S f, GC, S derline ual sym	Atterberg limits ab "A" line, with PI greater than 7	requiring use of dual symbols											
Coarse-gra e than half rr than 75 ,	coarse r than ze	an sands le or no ines)	Wide range in amounts o sizes	n grain sizes an f all interme	nd substantial diate particle	S₩	Well graded sands, gravelly sands, little or no fines	moisture conditions and drainage characteristics Example: Silty sand, gravelly; about 20%	moisture conditions and drainage characteristics Example: Silty sand, gravelly; about 20%	moisture conditions and drainage characteristics Example: Silty sand, gravelly; about 20%	moisture conditions and drainage characteristics Example: Silty sand, gravelly; about 20%	moisture conditions and drainage characteristics y Example: Silty sand, gravelly; about 20%	moisture conditions and drainage characteristics Example: Silty sond, gravelly; about 20%	moisture conditions and drainage characteristics Example: Silry sand, gravelly; about 20%	moisture conditions and drainage characteristics Example: Silty sand, gravelly; about 20%	moisture conditions and drainage characteristics Example: Silty sand, gravelly; about 20 %	moisture conditions and drainage characteristics Example: Silty sand, gravelly; about 20%	drainage characteristics Example: Silty sand, gravelly; about 20%	der field id	ntages of g recentage of oarse grain <i>GM</i> <i>Bo</i>	$C_{\rm U} = \frac{D_{60}}{D_{10}} \qquad \text{Greater}$ $C_{\rm C} = \frac{(D_{30})^2}{D_{10} \times D_{60}}$	than 6 Between 1 and 3
Mor large	nds half of smalle ieve si	Cle	Predominantl with some	y one size or a intermediate	range of sizes sizes missing	SP	Poorly graded sands, gravelly sands, little or no fines	ticles 12 mm maximum size; rounded and subangularsand	ven un	percel on pe size) c nan 5 % than 12 %	Not meeting all grada	tion requirements for SW										
nallest r	Sa re than 1 ction is 4 mm 5	s with nes ectable unt of nes)	Nonplastic fit cedures,	nes (for ident see ML below)	ification pro-	SM	Silty sands, poorly graded sand- silt mixtures	15% non-plastic fines with low dry strength; well com- pacted and moist in place;	ns as gi	termine curve pending more th More 1 5% to	Atterberg limits bel "A" line or PI less the 5	ow Above "A" line with PI between 4 and 7 are										
t the sr	Mo	Sand fi (appr amou	Plastic fines (f	lastic fines (for identification procedu see CL below)		or identification procedures, SC Clayey sands, poorly graded sand-clay mixtures		anuviai sanu, (SM)	fractic		Atterberg limits bel "A" line with greater than 7	PI requiring use of dual symbols										
pon	Identification	Procedures	on Fraction Sm	Fraction Smaller than 380 µm Sieve Size				2	the													
aller e size is a			Dry Strength (crushing character- istics)	Dilatancy (reaction to shaking)	Toughness (consistency near plastic limit)				identifying	60 50 Comparin	g soils at equal liquid limit											
coits crial is sm e size 5 μm siev	s and clay luid limit		None to slight	Quick to slow	None	ML	Inorganic silts and very fine sands, rock flour, silty or claycy fine sands with slight plasticity	Give typical name; indicate degree and character of plasticity, amount and maximum size of coarse grains; colour in wet	curve in	AD Toughness	s and dry strength increase asing plasticity indexCH	1. Mile										
grained s f of mate 5 μm siev (The 7	Site	2	Mcdium to high	None to very slow	Medium	CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays	condition, odour if any, local or geologic name, and other perti- nent descriptive information, and symbol in parentheses		Dasticit	a	OH										
hal hal			Slight to medium	Slow	Slight	OL	Organic silts and organic silt- clays of low plasticity	For undisturbed soils add infor-	Csc	10 CL	OL OL	Mit										
ore than the	l clays limit than		Slight to medium	Slow to none	Slight to medium	мн	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts	tion, consistency in undisturbed and remoulded states, moisture and drainage conditions			20 30 40 50 60	70 80 90 100										
W	and	8	High to very high None High		High	CH	Inorganic clays of high plas- ticity, fat clays	Example:			Liquid limit	-+										
	Silte		Medium to high	None to very slow	Slight to medium	ОН	Organic clays of medium to high plasticity	Clayey silt, brown; slightly plastic; small percentage of fine sand; numerous vertical		for labora	tory classification of	fine grained soils										
н	Highly Organic Soils		Readily iden spongy feel	Readily identified by colour, odour, spongy feel and frequently by fibrous		Pt	Peat and other highly organic soils	root holes; firm and dry in place; locss; (ML)														

Note: 1 Soils possessing characteristics of two groups are designated by combinations of group symbols (eg. GW-GC, well graded gravel-sand mixture with clay fines). 2 Soils with liquid limits of the order of 35 to 50 may be visually classified as being of medium plasticity.

LOG SYMBOLS

-

LOG COLUMN	SYMBOL	DEFINITION	
		Standing water level. Time delay following co	ompletion of drilling may be shown.
Groundwater Record	- C -	Extent of borehole collapse shortly after drilli	ng.
		Groundwater seepage into borehole or excave	vation noted during drilling or excavation.
Samples	ES U50 DB DS ASB ASS SAL	Soil sample taken over depth indicated, for e Undisturbed 50mm diameter tube sample tak Bulk disturbed sample taken over depth indic Small disturbed bag sample taken over depth Soil sample taken over depth indicated, for a Soil sample taken over depth indicated, for a Soil sample taken over depth indicated, for s	nvironmental analysis. en over depth indicated. ated. indicated. sbestos screening. cid sulfate soil analysis. alinity analysis.
	N = 17 4, 7, 10	Standard Penetration Test (SPT) performed bet show blows per 150mm penetration. 'R' as r	ween depths indicated by lines. Individual noted below.
Field Tests	Nc = 5 3 R	Solid Cone Penetration Test (SCPT) performed b figures show blows per 150mm penetration for 'R' refers to apparent hammer refusal within the	etween depths indicated by lines. Individual 60 degree solid cone driven by SPT hammer. corresponding 150mm depth increment.
	VNS = 25	Vane shear reading in kPa of Undrained Shea	r Strength.
Moisture (Cohesive Soils)	MC>PL MC≈PL	Moisture content estimated to be greater tha Moisture content estimated to be approximated	n plastic limit. rely equal to plastic limit.
(Cohesionless)	MC < PL D M W	Moisture content estimated to be less than p DRY – Runs freely through fingers. MOIST – Does not run freely but no free WET – Free water visible on soil surfac	water visible on soil surface. ce.
Strength (Consistency) Cohesive Soils	VS S F St VSt H ()	VERY SOFT – Unconfined compressive str SOFT – Unconfined compressive str FIRM – Unconfined compressive str STIFF – Unconfined compressive str VERY STIFF – Unconfined compressive str HARD – Unconfined compressive str Bracketed symbol indicates estimated consistent str	ength less than 25kPa ength 25-5 0kPa ength 50-1 00kPa ength 100- 200kPa ength 200- 400kPa ength greater than 400kPa ency based o n tactile examination or other
Density Index/ Relative Density (Cohesionless Soils)	VL L MD	Density Index (ID) Range (%) Very Loose <15	SPT ' N' Value Range (Blows/300mm) 0-4 4-10 10-30
	D VD ()	Dense 65-85 Very Dense >85 Bracketed symbol indicates estimated density	30-50 >50 y based on ease of drilling or other tests.
Hand Penetrometer Readings	300 250	Numbers indicate individual test results in kF material unless noted otherwise	a on representative undisturbed
Remarks	'V' bit	Hardened steel 'V' shaped bit.	
	'TC' bit	Tungsten carbide wing bit.	
	T ₆₀	Penetration of auger string in mm under stati hydraulics without rotation of augers.	c load of rig applied by drill head

LOG SYMBOLS CONTINUED

ROCK STRENGTH

Rock strength is defined by the Point Load Strength Index (Is 50) and refers to the strength of the rock substance in the bedding. The test procedure is described by the International Journal of Rock Mechanics, Mining and Geomechanics Abstract Volume 22, No 2, 1985.

TERM	SYMBOL	ls (50) MPa	FIELD GUIDE
Extremely Low:	EL	0.03	Easily remoulded by hand to a material with soil properties.
Very Low:	VL	0.00	May be crumbled in the hand. Sandstone is "sugary" and friable.
Low:	L	0.1	A piece of core 150 mm long x 50mm dia. may be broken by hand and easily scored with a knife. Sharp edges of core may be friable and break during handling.
Medium Strength:	м	0.3	A piece of core 150 mm long x 50mm dia. can be broken by hand with difficulty. Readily scored with knife.
High:	Н	3	A piece of core 150 mm long x 50mm dia. core cannot be broken by hand, can be slightly scratched or scored with knife; rock rings under hammer.
Very High:	VH	10	A piece of core 150 mm long x 50mm dia. may be broken with hand-held pick after more than one blow. Cannot be scratched with pen knife; rock rings under hammer.
Extremely High:	EH		A piece of core 150 mm long x 50mm dia. is very difficult to break with h and-held hammer . Rings when struck with a hammer.

ROCK STRENGTH

ABBREVIATION	DESCRIPTION	NOTES
Be CS	Bedding Plane Parting Clay Seam	Defect orientations measured relative to the normal to (i.e. relative to horizontal for vertical holes)
J	Joint	
Р	Planar	
Un	Undulating	
S	Smooth	
R	Rough	
IS	Iron stained	
XWS	Extremely Weathered Seam	
Cr	Crushed Seam	
60t	Thickness of defect in millimetres	

Appendix C: Laboratory Reports & COC Documents

email: sydney@envirolab.com.au envirolab.com.au

Envirolab Services Pty Ltd - Sydney | ABN 37 112 535 645

CERTIFICATE OF ANALYSIS

161150

Client: Environmental Investigation Services PO Box 976 North Ryde BC NSW 1670

Attention: Geoff Fletcher

Sample log in details:

Your Reference: No. of samples: Date samples received / completed instructions received

E27168KF, Chatswood

1 material 38 soils 01/02/17 / 01/02/17

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

Report Details:

 Date results requested by: / Issue Date:
 8/02/17
 /
 7/02/17

 Date of Preliminary Report:
 Not Issued
 Not Issued

 NATA accreditation number 2901. This document shall not be reproduced except in full.
 Accredited for compliance with ISO/IEC 17025 - Testing
 Tests not covered by NATA are denoted with *.

Results Approved By:

David Springer General Manager

vTRH(C6-C10)/BTEXN in Soil Our Reference:	UNITS	161150-1	161150-3	161150-4	161150-5	161150-8
Your Reference		BH101	BH102	BH103	BH104	BH105
Depth	-	0.1-0.2	0.1-0.2	00.1	0.0-0.1	0.1-0.2
DateSampled		30/01/2017	30/01/2017	31/01/2017	31/01/2017	31/01/2017
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date extracted	-	03/02/2017	03/02/2017	03/02/2017	03/02/2017	03/02/2017
Date analysed	-	06/02/2017	06/02/2017	06/02/2017	06/02/2017	06/02/2017
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 lessBTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	105	106	108	106	113
VTRH(C6-C10)/BTEXNin Soil						
Our Reference:	UNITS	161150-10	161150-12	161150-14	161150-16	161150-19
Your Reference		BH106	BH107	BH108	BH109	BH110
	-					
Depth		0.05-0.3	0.05-0.2	0.05-0.2	0.05-0.2	0.1-0.3
DateSampled		1/02/2017	1/02/2017	1/02/2017	1/02/2017	1/02/2017
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date extracted	-	03/02/2017	03/02/2017	03/02/2017	03/02/2017	03/02/2017
Date analysed	-	06/02/2017	06/02/2017	06/02/2017	06/02/2017	06/02/2017
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C 10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	107	98	101	102	111

vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	161150-21	161150-25	161150-29	161150-31	161150-33
Your Reference		BH111	BH112	BH113	BH114	BH114
	-					
Depth		0.06-0.25	0.1-0.3	0.1-0.3	0-0.2	1.5-1.9
Date Sampled		1/02/2017	1/02/2017	1/02/2017	1/02/2017	1/02/2017
I ype of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date extracted	-	03/02/2017	03/02/2017	03/02/2017	03/02/2017	03/02/2017
Date analysed	-	06/02/2017	06/02/2017	06/02/2017	06/02/2017	06/02/2017
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	107	108	110	106	107
-	1				7	
vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	161150-35	161150-36	161150-38		
Your Reference		BH115	DUPGF1	TBS		
Denth	-	0-0.2	_	_		
Date Sampled		1/02/2017	1/02/2017	1/02/2017		
Type of sample		SOIL	SOIL	SOIL		

Date Sampled Type of sample		1/02/2017 SOIL	1/02/2017 SOIL	1/02/2017 SOIL
Date extracted	-	03/02/2017	03/02/2017	03/02/2017
Date analysed	-	06/02/2017	06/02/2017	06/02/2017
TRHC6 - C9	mg/kg	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	114	103	111

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	161150-1	161150-3	161150-4	161150-5	161150-8
Your Reference		BH101	BH102	BH103	BH104	BH105
	-			0.04	0.0.0.4	
Depth Dets Sevenlad		0.1-0.2	0.1-0.2	00.1	0.0-0.1	0.1-0.2
Type of sample		30/01/2017 SOII	30/01/2017 SOII	31/01/2017 SOII	31/01/2017 SOII	31/01/2017 SOII
Date extracted	-	03/02/2017	03/02/2017	03/02/2017	03/02/2017	03/02/2017
Date analysed	-	03/02/2017	03/02/2017	03/02/2017	03/02/2017	03/02/2017
TRHC 10 - C 14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	120	<100
TRH>C 10-C 16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Total+veTRH(>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	110	109	119	120	114
svTRH (C10-C40) in Soil						
Our Reference:	UNITS	161150-10	161150-12	161150-14	161150-16	161150-19
Your Reference		BH106	BH107	BH108	BH109	BH110
Denth	-	0.05-0.3	0.05-0.2	0.05-0.2	0.05-0.2	0 1-0 3
Date Sampled		1/02/2017	1/02/2017	1/02/2017	1/02/2017	1/02/2017
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date extracted	_	03/02/2017	03/02/2017	03/02/2017	03/02/2017	03/02/2017
Date analysed	_	03/02/2017	03/02/2017	03/02/2017	03/02/2017	03/02/2017
	ma/ka	<50	<50	<50	<50	<50
	ma/ka	<100	<100	<100	<100	<100
	ma/ka	<100	<100	<100	<100	<100
	mg/kg	<50	<50	<50	<50	<50
	mg/kg	<50	<50	<50	<50	<50
Naphthalene (F2)	тід/кд	->U	VG>	VG>	VG>	UC>
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Total+veTRH(>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	90	114	104	107	106

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	161150-21	161150-25	161150-29	161150-31	161150-33
Your Reference		BH111	BH112	BH113	BH114	BH114
	-					
Depth		0.06-0.25	0.1-0.3	0.1-0.3	0-0.2	1.5-1.9
Date Sampled		1/02/2017	1/02/2017	1/02/2017	1/02/2017	1/02/2017
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date extracted	-	03/02/2017	03/02/2017	03/02/2017	03/02/2017	03/02/2017
Date analysed	-	03/02/2017	03/02/2017	03/02/2017	03/02/2017	03/02/2017
TRHC 10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Total+veTRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	105	103	101	108	100

svTRH (C10-C40) in Soil			
Our Reference:	UNITS	161150-35	161150-36
Your Reference		BH115	DUPGF1
	-		
Depth		0-0.2	-
Date Sampled		1/02/2017	1/02/2017
Type of sample		SOIL	SOIL
Date extracted	-	03/02/2017	03/02/2017
Date analysed	-	03/02/2017	03/02/2017
TRHC 10 - C14	mg/kg	<50	<50
TRHC 15 - C28	mg/kg	<100	<100
TRHC 29 - C36	mg/kg	<100	130
TRH>C10-C16	mg/kg	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50
TRH>C16-C34	mg/kg	<100	110
TRH>C34-C40	mg/kg	<100	<100
Total+veTRH (>C10-C40)	mg/kg	<50	110
Surrogate o-Terphenyl	%	110	106

PAHs in Soil Our Reference: Your Reference	UNITS	161150-1 BH101	161150-3 BH102	161150-4 BH103	161150-5 BH104	161150-8 BH105
Depth Date Sampled Type of sample		0.1-0.2 30/01/2017 SOIL	0.1-0.2 30/01/2017 SOIL	00.1 31/01/2017 SOIL	0.0-0.1 31/01/2017 SOIL	0.1-0.2 31/01/2017 SOIL
Date extracted	-	03/02/2017	03/02/2017	03/02/2017	03/02/2017	03/02/2017
Date analysed	-	03/02/2017	03/02/2017	03/02/2017	03/02/2017	03/02/2017
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.7	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.2	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	1.7	<0.1	0.1	<0.1	<0.1
Pyrene	mg/kg	1.5	<0.1	0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.7	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.7	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	1	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	0.77	<0.05	0.08	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	0.5	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	0.5	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	1.0	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	1.0	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	1.0	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	mg/kg	8.5	<0.05	0.3	<0.05	<0.05
Surrogate p-Terphenyl-d14	%	118	107	116	114	112

PAHs in Soil Our Reference:	UNITS	161150-10	161150-12	161150-14	161150-16	161150-19
Your Reference		BH106	BH107	BH108	BH109	BH110
Depth Date Sampled Type of sample		0.05-0.3 1/02/2017 SOIL	0.05-0.2 1/02/2017 SOIL	0.05-0.2 1/02/2017 SOIL	0.05-0.2 1/02/2017 SOIL	0.1-0.3 1/02/2017 SOIL
Date extracted	-	03/02/2017	03/02/2017	03/02/2017	03/02/2017	03/02/2017
Date analysed	-	03/02/2017	03/02/2017	03/02/2017	03/02/2017	03/02/2017
Naphthalene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	0.2	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	0.2	<0.1	0.7	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	0.2	<0.1
Fluoranthene	mg/kg	<0.1	0.4	0.1	2.4	<0.1
Pyrene	mg/kg	<0.1	0.5	0.1	2.5	0.1
Benzo(a)anthracene	mg/kg	<0.1	0.2	<0.1	1.4	<0.1
Chrysene	mg/kg	<0.1	0.2	<0.1	1.3	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	0.4	<0.2	2.5	<0.2
Benzo(a)pyrene	mg/kg	<0.05	0.2	0.06	1.5	0.07
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	0.1	<0.1	0.8	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	0.2	<0.1	0.8	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	2.2	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	2.2	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	2.2	<0.5
Total +ve PAH's	mg/kg	<0.05	2.5	0.3	15	0.2
Surrogate p-Terphenyl-d14	%	105	110	107	115	109

PAHs in Soil		101150.01	101150.05	404450.00	101150.01	101150.00
Our Reference:	UNITS	161150-21	161150-25	161150-29	161150-31	161150-33
Your Reference		BH111	BH112	BH113	BH114	BH114
Depth		0.06-0.25	0.1-0.3	0.1-0.3	0-0.2	1.5-1.9
Date Sampled		1/02/2017	1/02/2017	1/02/2017	1/02/2017	1/02/2017
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date extracted	-	03/02/2017	03/02/2017	03/02/2017	03/02/2017	03/02/2017
Date analysed	-	03/02/2017	03/02/2017	03/02/2017	03/02/2017	03/02/2017
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	0.1	0.1	0.2	<0.1
Pyrene	mg/kg	<0.1	0.2	0.1	0.2	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	0.3	<0.2
Benzo(a)pyrene	mg/kg	<0.05	0.07	0.06	0.2	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	mg/kg	<0.05	0.51	0.3	1.2	<0.05
Surrogate p-Terphenyl-d14	%	113	106	106	110	106

PAHs in Soil			
Our Reference:	UNITS	161150-35	161150-36
Your Reference		BH115	DUPGF1
Depth		0-0.2	-
Date Sampled		1/02/2017	1/02/2017
Type of sample		SOIL	SOIL
Date extracted	-	03/02/2017	03/02/2017
Date analysed	-	03/02/2017	03/02/2017
Naphthalene	mg/kg	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	0.2
Anthracene	mg/kg	<0.1	<0.1
Fluoranthene	mg/kg	0.2	0.5
Pyrene	mg/kg	0.2	0.5
Benzo(a)anthracene	mg/kg	0.1	0.2
Chrysene	mg/kg	0.1	0.2
Benzo(b,j+k)fluoranthene	mg/kg	0.3	0.4
Benzo(a)pyrene	mg/kg	0.2	0.3
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	0.1	0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5
Total +ve PAH's	mg/kg	1.5	2.6
Surrogate p-Terphenyl-d14	%	114	107

Organochlorine Pesticides in soil						
Our Reference:	UNITS	161150-1	161150-3	161150-4	161150-5	161150-8
Your Reference		BH101	BH102	BH103	BH104	BH105
Death	-	04.00	04.00	0.01	0.0.0.4	04.00
Deptn Data Sampled		0.1-0.2	0.1-0.2	00.1	0.0-0.1	0.1-0.2
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
 Date extracted	_	03/02/2017	03/02/2017	03/02/2017	03/02/2017	03/02/2017
Date analysed	_	04/02/2017	04/02/2017	04/02/2017	04/02/2017	04/02/2017
	malka	-0.1	-0.1	-0.1	-0.1	-0.1
	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpna-BHC	mg/кg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total+veDDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	119	117	132	121	121

Organochlorine Pesticides in soil						
Our Reference:	UNITS	161150-10	161150-12	161150-14	161150-16	161150-19
Your Reference		BH106	BH107	BH108	BH109	BH110
Denth	-	0.05.0.0	0.05.0.0	0.05.0.0		04.00
Deptn Data Sampled		0.05-0.3	0.05-0.2	0.05-0.2	0.05-0.2	0.1-0.3
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
		02/02/2017	02/02/2017	02/02/2017	02/02/2017	02/02/2017
	-	03/02/2017	03/02/2017	03/02/2017	03/02/2017	03/02/2017
Date analysed	-	04/02/2017	04/02/2017	04/02/2017	04/02/2017	04/02/2017
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total+veDDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	121	119	121	119	119

Organochlorine Pesticides in soil						
Our Reference:	UNITS	161150-21	161150-25	161150-29	161150-31	161150-33
Your Reference		BH111	BH112	BH113	BH114	BH114
Denth	-	0.00.0.05	04.00	04.00		4540
Deptn Deta Samplad		0.06-0.25	0.1-0.3	0.1-0.3	0-0.2	1.5-1.9
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Dete systemate d		00/00/0047	00/00/0047	00/00/0047	00/00/0047	00/00/0047
Date extracted	-	03/02/2017	03/02/2017	03/02/2017	03/02/2017	03/02/2017
Date analysed	-	04/02/2017	04/02/2017	04/02/2017	04/02/2017	04/02/2017
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total+veDDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	122	119	117	126	113

Organochlorine Pesticides in soil			
Our Reference:	UNITS	161150-35	161150-36
Your Reference		BH115	DUPGF1
	-		
Depth		0-0.2	-
Date Sampled		1/02/2017	1/02/2017
		SOIL	50IL
Date extracted	-	03/02/2017	03/02/2017
Date analysed	-	04/02/2017	04/02/2017
HCB	mg/kg	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1
Endosulfanl	mg/kg	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1
Total+veDDT+DDD+DDE	mg/kg	<0.1	<0.1
Surrogate TCMX	%	120	118

Organophosphorus Pesticides						
Our Reference:	UNITS	161150-1	161150-3	161150-4	161150-5	161150-8
Your Reference		BH101	BH102	BH103	BH104	BH105
Depth		0.1-0.2	0.1-0.2	00.1	0.0-0.1	0.1-0.2
Date Sampled		30/01/2017	30/01/2017	31/01/2017	31/01/2017	31/01/2017
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date extracted	-	03/02/2017	03/02/2017	03/02/2017	03/02/2017	03/02/2017
Date analysed	-	04/02/2017	04/02/2017	04/02/2017	04/02/2017	04/02/2017
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	119	117	132	121	121
Organophosphorus Pesticides		161150-10	161150-12	161150-14	161150-16	161150-19
Your Reference		BH106	BH107	BH108	BH109	BH110
	-					
Depth		0.05-0.3	0.05-0.2	0.05-0.2	0.05-0.2	0.1-0.3
Date Sampled		1/02/2017 SOII	1/02/2017 SOII	1/02/2017 SOII	1/02/2017 SOII	1/02/2017 SOII
Date extracted	-	03/02/2017	03/02/2017	03/02/2017	03/02/2017	03/02/2017
Date analysed	-	04/02/2017	04/02/2017	04/02/2017	04/02/2017	04/02/2017
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
			440	404	440	440

Organophosphorus Pesticides						
Our Reference:	UNITS	161150-21	161150-25	161150-29	161150-31	161150-33
Your Reference		BH111	BH112	BH113	BH114	BH114
	-					
Depth		0.06-0.25	0.1-0.3	0.1-0.3	0-0.2	1.5-1.9
Date Sampled		1/02/2017	1/02/2017	1/02/2017	1/02/2017	1/02/2017
I ype of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date extracted	-	03/02/2017	03/02/2017	03/02/2017	03/02/2017	03/02/2017
Date analysed	-	04/02/2017	04/02/2017	04/02/2017	04/02/2017	04/02/2017
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	122	119	117	126	113

Organophosphorus Pesticides			
Our Reference:	UNITS	161150-35	161150-36
Your Reference		BH115	DUPGF1
	-		
Depth		0-0.2	-
Date Sampled		1/02/2017	1/02/2017
Type of sample		SOIL	SOIL
Date extracted	-	03/02/2017	03/02/2017
Date analysed	-	04/02/2017	04/02/2017
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1
Surrogate TCMX	%	120	118

PCBs in Soil						
Our Reference:	UNITS	161150-1	161150-3	161150-4	161150-5	161150-8
Your Reference		BH101	BH102	BH103	BH104	BH105
	-					
Depth		0.1-0.2	0.1-0.2	00.1	0.0-0.1	0.1-0.2
Date Sampled		30/01/2017	30/01/2017	31/01/2017	31/01/2017	31/01/2017
l ype of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date extracted	-	03/02/2017	03/02/2017	03/02/2017	03/02/2017	03/02/2017
Date analysed	-	04/02/2017	04/02/2017	04/02/2017	04/02/2017	04/02/2017
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	119	117	132	121	121
	1					
PCBs in Soil						
Our Reference:	UNITS	161150-10	161150-12	161150-14	161150-16	161150-19
Your Reference		BH106	BH107	BH108	BH109	BH110
Depth		0.05-0.3	0.05-0.2	0.05-0.2	0.05-0.2	0.1-0.3
Date Sampled		1/02/2017	1/02/2017	1/02/2017	1/02/2017	1/02/2017
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date extracted	-	03/02/2017	03/02/2017	03/02/2017	03/02/2017	03/02/2017
Date analysed	-	04/02/2017	04/02/2017	04/02/2017	04/02/2017	04/02/2017
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	121	119	121	119	119

PCBs in Soil						
Our Reference:	UNITS	161150-21	161150-25	161150-29	161150-31	161150-33
Your Reference		BH111	BH112	BH113	BH114	BH114
	-					
Depth		0.06-0.25	0.1-0.3	0.1-0.3	0-0.2	1.5-1.9
Date Sampled		1/02/2017	1/02/2017	1/02/2017	1/02/2017	1/02/2017
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date extracted	-	03/02/2017	03/02/2017	03/02/2017	03/02/2017	03/02/2017
Date analysed	-	04/02/2017	04/02/2017	04/02/2017	04/02/2017	04/02/2017
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	122	119	117	126	113

PCBs in Soil			
Our Reference:	UNITS	161150-35	161150-36
Your Reference		BH115	DUPGF1
	-		
Depth		0-0.2	-
Date Sampled		1/02/2017	1/02/2017
Type of sample		SOIL	SOIL
Date extracted	-	03/02/2017	03/02/2017
Date analysed	-	04/02/2017	04/02/2017
Aroclor 1016	mg/kg	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1
Surrogate TCLMX	%	120	118

Acid Extractable metals in soil						
Our Reference:	UNITS	161150-1	161150-3	161150-4	161150-5	161150-8
Your Reference		BH101	BH102	BH103	BH104	BH105
	-					
Depth		0.1-0.2	0.1-0.2	00.1	0.0-0.1	0.1-0.2
Date Sampled		30/01/2017	30/01/2017	31/01/2017	31/01/2017	31/01/2017
		SOIL	SOIL	SOIL	SOIL	SOIL
Date prepared	-	03/02/2017	03/02/2017	03/02/2017	03/02/2017	03/02/2017
Date analysed	-	03/02/2017	03/02/2017	03/02/2017	03/02/2017	03/02/2017
Arsenic	mg/kg	5	<4	<4	4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	17	9	20	11	11
Copper	mg/kg	12	8	23	22	3
Lead	mg/kg	28	20	99	53	19
Mercury	mg/kg	<0.1	<0.1	0.1	0.2	<0.1
Nickel	mg/kg	8	7	10	8	1
Zinc	mg/kg	41	34	93	81	12
	1	Γ	I	I	I	I
Acid Extractable metals in soil						
Our Reference:	UNITS	161150-10	161150-12	161150-14	161150-16	161150-19
Your Reference		BH106	BH107	BH108	BH109	BH110
Depth		0.05-0.3	0.05-0.2	0.05-0.2	0.05-0.2	0.1-0.3
Date Sampled		1/02/2017	1/02/2017	1/02/2017	1/02/2017	1/02/2017
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date prepared	-	03/02/2017	03/02/2017	03/02/2017	03/02/2017	03/02/2017
Date analysed	-	03/02/2017	03/02/2017	03/02/2017	03/02/2017	03/02/2017
Arsenic	mg/kg	6	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	31	14	11	18	14
Copper	mg/kg	29	8	16	34	5
Lead	mg/kg	27	39	29	50	17
Mercury	mg/kg	<0.1	0.3	<0.1	0.3	<0.1
Nickel	mg/kg	28	8	1	26	6
Zinc	mg/kg	49	31	21	1,600	23

Acid Extractable metals in soil						
Our Reference:	UNITS	161150-21	161150-25	161150-29	161150-31	161150-33
Your Reference		BH111	BH112	BH113	BH114	BH114
	-					
Depth		0.06-0.25	0.1-0.3	0.1-0.3	0-0.2	1.5-1.9
Date Sampled		1/02/2017	1/02/2017	1/02/2017	1/02/2017	1/02/2017
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date prepared	-	03/02/2017	03/02/2017	03/02/2017	03/02/2017	03/02/2017
Date analysed	-	03/02/2017	03/02/2017	03/02/2017	03/02/2017	03/02/2017
Arsenic	mg/kg	<4	<4	<4	<4	12
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	1
Chromium	mg/kg	11	16	24	28	19
Copper	mg/kg	6	9	19	27	57
Lead	mg/kg	31	42	110	48	800
Mercury	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
Nickel	mg/kg	4	10	8	18	9
Zinc	mg/kg	39	40	46	71	780

Acid Extractable metals in soil					
Our Reference:	UNITS	161150-35	161150-36	161150-40	161150-41
Your Reference		BH115	DUPGF1	BH111 -	BH114 -
	-			[TRIPLICATE]	[TRIPLICATE]
Depth		0-0.2	-	0.06-0.25	1.5-1.9
Date Sampled		1/02/2017	1/02/2017	01/02/2017	01/02/2017
Type of sample		SOIL	SOIL	SOIL	SOIL
Date prepared	-	03/02/2017	03/02/2017	03/02/2017	03/02/2017
Date analysed	-	03/02/2017	03/02/2017	03/02/2017	03/02/2017
Arsenic	mg/kg	<4	<4	<4	19
Cadmium	mg/kg	<0.4	<0.4	<0.4	2
Chromium	mg/kg	13	18	17	41
Copper	mg/kg	24	35	7	270
Lead	mg/kg	21	59	44	2,000
Mercury	mg/kg	0.3	<0.1	<0.1	<0.1
Nickel	mg/kg	12	13	6	49
Zinc	mg/kg	75	79	43	920

Moisture Our Reference:	UNITS	161150-1	161150-3	161150-4	161150-5	161150-8
Your Reference		BH101	BH102	BH103	BH104	BH105
Depth Date Sampled Type of sample		0.1-0.2 30/01/2017 SOIL	0.1-0.2 30/01/2017 SOIL	00.1 31/01/2017 SOIL	0.0-0.1 31/01/2017 SOIL	0.1-0.2 31/01/2017 SOIL
Date prepared	-	03/02/2017	03/02/2017	03/02/2017	03/02/2017	03/02/2017
Date analysed	-	06/02/2017	06/02/2017	06/02/2017	06/02/2017	06/02/2017
Moisture	%	9.5	10	4.4	8.4	6.0
			1	I	1	
Moisture			101150.10			
Our Reference:	UNITS	161150-10	161150-12	161150-14	161150-16	161150-19
Your Reference		BH106	BH107	BH108	BH109	BH110
Depth		0.05-0.3	0.05-0.2	0.05-0.2	0.05-0.2	0.1-0.3
Date Sampled		1/02/2017	1/02/2017	1/02/2017	1/02/2017	1/02/2017
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date prepared	-	03/02/2017	03/02/2017	03/02/2017	03/02/2017	03/02/2017
Date analysed	-	06/02/2017	06/02/2017	06/02/2017	06/02/2017	06/02/2017
Moisture	%	5.0	9.2	7.1	8.2	7.8
•• • •						
Moisture		161150 21	161150.25	161150 20	161150 21	161150 22
Vour Reference.	UNITS	BU111	BU112	BU112	BU11/	BH114
	-	ЫШП	DITTZ	BIIIIS	DIT14	DIT14
Depth		0.06-0.25	0.1-0.3	0.1-0.3	0-0.2	1.5-1.9
Date Sampled		1/02/2017	1/02/2017	1/02/2017	1/02/2017	1/02/2017
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date prepared	-	03/02/2017	03/02/2017	03/02/2017	03/02/2017	03/02/2017
Date analysed	-	06/02/2017	06/02/2017	06/02/2017	06/02/2017	06/02/2017
Moisture	%	8.9	8.3	9.4	6.3	12
			1	1		
Moisture		404450.05	404450.00			
()ur Reterence.		161150-35	161150-36	1		

Our Reference:	UNITS	161150-35	161150-36
Your Reference		BH115	DUPGF1
Depth		0-0.2	-
Date Sampled		1/02/2017	1/02/2017
Type of sample		SOIL	SOIL
Date prepared	-	03/02/2017	03/02/2017
Date analysed	-	06/02/2017	06/02/2017
Moisture	%	5.1	8.7

Asbestos ID - soils						
Our Reference:	UNITS	161150-1	161150-3	161150-4	161150-5	161150-8
Your Reference		BH101	BH102	BH103	BH104	BH105
	-	Billot	BITTOL	Billio	Billor	Birroo
Depth		0.1-0.2	0.1-0.2	00.1	0.0-0.1	0.1-0.2
Date Sampled		30/01/2017	30/01/2017	31/01/2017	31/01/2017	31/01/2017
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date analysed	-	7/02/2017	7/02/2017	7/02/2017	7/02/2017	7/02/2017
Sample mass tested	g	Approx. 25g	Approx. 35g	Approx. 25g	Approx. 30g	Approx. 25g
Sample Description	-	Brown sandy				
		soil & rocks				
Asbestos ID in soil	-	No asbestos				
		detected at				
		reporting limit of				
		0.1g/kg	0.1g/kg	0.1g/kg	0.1g/kg	0.1g/kg
		Organic fibres				
		detected	detected	detected	detected	detected
Trace Analysis	-	No asbestos				
		detected	detected	detected	detected	detected
	1		1	1	1	
Asbestos ID - soils						
Our Reference:	UNITS	161150-10	161150-12	161150-14	161150-16	161150-19
Your Reference		BH106	BH107	BH108	BH109	BH110
	-					
Depth		0.05-0.3	0.05-0.2	0.05-0.2	0.05-0.2	0.1-0.3
Date Sampled		1/02/2017	1/02/2017	1/02/2017	1/02/2017	1/02/2017
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date analysed	-	7/02/2017	7/02/2017	7/02/2017	7/02/2017	7/02/2017
Sample mass tested	g	Approx. 35g	Approx. 25g	Approx. 30g	Approx. 30g	Approx. 30g
Sample Description	-	Brown sandy				
		soil & rocks				
Asbestos ID in soil	-	No asbestos				
		detected at				
		reporting limit of				
		0.1g/kg	0.1g/kg	0.1g/kg	0.1g/kg	0.1g/kg
		Organic fibres				
		detected	detected	detected	detected	detected
Trace Analysis	-	No asbestos				
		detected	detected	detected	detected	detected

Asbestos ID - soils						
Our Reference:	UNITS	161150-21	161150-25	161150-29	161150-31	161150-33
Your Reference		BH111	BH112	BH113	BH114	BH114
	-					
Depth		0.06-0.25	0.1-0.3	0.1-0.3	0-0.2	1.5-1.9
Date Sampled		1/02/2017	1/02/2017	1/02/2017	1/02/2017	1/02/2017
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date analysed	-	7/02/2017	7/02/2017	7/02/2017	7/02/2017	7/02/2017
Sample mass tested	g	Approx. 20g	Approx. 30g	Approx. 30g	Approx. 20g	Approx. 20g
Sample Description	-	Brown sandy				
		soil & rocks				
Asbestos ID in soil	-	No asbestos				
		detected at				
		reporting limit of				
		0.1g/kg	0.1g/kg	0.1g/kg	0.1g/kg	0.1g/kg
		Organic fibres				
		detected	detected	detected	detected	detected
Trace Analysis	-	No asbestos				
		detected	detected	detected	detected	detected

Asbestos ID - soils		
Our Reference:	UNITS	161150-35
Your Reference		BH115
	-	
Depth		0-0.2
Date Sampled		1/02/2017
Type of sample		SOIL
Date analysed	-	7/02/2017
Sample mass tested	g	Approx. 20g
Sample Description	-	Brown sandy soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected
Trace Analysis	-	No asbestos detected

Asbestos ID - materials		
Our Reference:	UNITS	161150-39
Your Reference		GFF1
	-	
Depth		-
Date Sampled		1/02/2017
Type of sample		Material
Date analysed	-	6/02/2017
Mass / Dimension of Sample	-	30x25x5mm
Sample Description	-	Grey
		compressed
		fibre cement
		material
Asbestos ID in materials	-	Chrysotile
		asbestos
		detected

Client Reference: E27168KF, Chatswood

MethodID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
	For soil results:- 1. 'TEQ PQL' values are assuming all contributing PAHs reported as <pql actually="" are="" at="" is="" pql.="" the="" the<br="" this="">most conservative approach and can give false positive TEQs given that PAHs that contribute to the TEQ calculation may not be present.</pql>
	2. 'TEQ zero' values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<="" present="" susceptible="" td="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""></pql>
	3. 'TEQ half PQL' values are assuming all contributing PAHs reported as <pql are="" half="" pql.<br="" stipulated="" the="">Hence a mid-point between the most and least conservative approaches above.</pql>
	Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PAHs" is simply a sum of the positive individual PAHs.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's. Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore
	simply a sum of the positive individually report DDD+DDE+DDT.
Org-008	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
	Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.

Client Reference: E27168KF, Chatswood

MethodID	Methodology Summary
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.

Client Reference: E27168KF, Chatswood								
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
vTRH(C6-C10)/BTEXNin Soil						Base II Duplicate II % RPD		
Date extracted	-			03/02/2 017	161150-1	03/02/2017 03/02/2017	LCS-6	03/02/2017
Date analysed	-			06/02/2 017	161150-1	06/02/2017 06/02/2017	LCS-6	06/02/2017
TRHC6 - C9	mg/kg	25	Org-016	<25	161150-1	<25 <25	LCS-6	98%
TRHC6 - C10	mg/kg	25	Org-016	<25	161150-1	<25 <25	LCS-6	98%
Benzene	mg/kg	0.2	Org-016	<0.2	161150-1	<0.2 <0.2	LCS-6	103%
Toluene	mg/kg	0.5	Org-016	<0.5	161150-1	<0.5 <0.5	LCS-6	102%
Ethylbenzene	mg/kg	1	Org-016	<1	161150-1	<1 <1	LCS-6	90%
m+p-xylene	mg/kg	2	Org-016	~2	161150-1	<2 <2	LCS-6	97%
o-Xylene	mg/kg	1	Org-016	<1	161150-1	<1 <1	LCS-6	96%
naphthalene	mg/kg	1	Org-014	<1	161150-1	<1 <1	[NR]	[NR]
<i>Surrogate</i> aaa- Trifluorotoluene	%		Org-016	119	161150-1	105 109 RPD:4	LCS-6	110%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
svTRH (C10-C40) in Soil					Sm#	Base II Duplicate II % RPD		Recovery
Data avtracted				02/02/2	161150 1	02/02/2017		02/02/2017
Date extracted	-			03/02/2	101150-1	03/02/2017 [[03/02/2017	LC3-6	03/02/2017
Date analysed	-			03/02/2 017	161150-1	03/02/2017 03/02/2017	LCS-6	03/02/2017
TRHC 10 - C14	mg/kg	50	Org-003	<50	161150-1	<50 <50	LCS-6	98%
TRHC 15 - C28	mg/kg	100	Org-003	<100	161150-1	<100 <100	LCS-6	87%
TRHC 29 - C 36	mg/kg	100	Org-003	<100	161150-1	<100 <100	LCS-6	90%
TRH>C10-C16	mg/kg	50	Org-003	<50	161150-1	<50 <50	LCS-6	98%
TRH>C16-C34	mg/kg	100	Org-003	<100	161150-1	<100 <100	LCS-6	87%
TRH>C34-C40	mg/kg	100	Org-003	<100	161150-1	<100 <100	LCS-6	90%
Surrogate o-Terphenyl	%		Org-003	97	161150-1	110 112 RPD:2	LCS-6	100%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Soil						Base II Duplicate II % RPD		
Date extracted	-			03/02/2 017	161150-1	03/02/2017 03/02/2017	LCS-6	03/02/2017
Date analysed	-			03/02/2 017	161150-1	03/02/2017 03/02/2017	LCS-6	03/02/2017
Naphthalene	mg/kg	0.1	Org-012	<0.1	161150-1	<0.1 <0.1	LCS-6	100%
Acenaphthylene	mg/kg	0.1	Org-012	<0.1	161150-1	<0.1 <0.1	[NR]	[NR]
Acenaphthene	mg/kg	0.1	Org-012	<0.1	161150-1	<0.1 <0.1	[NR]	[NR]
Fluorene	mg/kg	0.1	Org-012	<0.1	161150-1	<0.1 <0.1	LCS-6	102%
Phenanthrene	mg/kg	0.1	Org-012	<0.1	161150-1	0.7 0.6 RPD:15	LCS-6	117%
Anthracene	mg/kg	0.1	Org-012	<0.1	161150-1	0.2 0.1 RPD:67	[NR]	[NR]
Fluoranthene	mg/kg	0.1	Org-012	<0.1	161150-1	1.7 1.9 RPD:11	LCS-6	111%
Pyrene	mg/kg	0.1	Org-012	<0.1	161150-1	1.5 1.7 RPD:12	LCS-6	109%
Benzo(a)anthracene	mg/kg	0.1	Org-012	<0.1	161150-1	0.7 0.8 RPD:13	[NR]	[NR]
Chrysene	mg/kg	0.1	Org-012	<0.1	161150-1	0.7 0.8 RPD:13	LCS-6	102%
Benzo(b,j +k)fluoranthene	mg/kg	0.2	Org-012	<0.2	161150-1	1 1 RPD:0	[NR]	[NR]

Client Reference: E27168KF, Chatswood									
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery	
PAHs in Soil						Base II Duplicate II % RPD			
Benzo(a)pyrene	mg/kg	0.05	Org-012	<0.05	161150-1	0.77 0.86 RPD:11	LCS-6	112%	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012	<0.1	161150-1	0.5 0.5 RPD:0	[NR]	[NR]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012	<0.1	161150-1	<0.1 <0.1	[NR]	[NR]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012	<0.1	161150-1	0.5 0.5 RPD:0	[NR]	[NR]	
<i>Surrogate p</i> -Terphenyl- d14	%		Org-012	113	161150-1	118 108 RPD:9	LCS-6	120%	
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery	
Organochlorine Pesticides in soil						Base II Duplicate II % RPD			
Date extracted	-			03/02/2 017	161150-1	03/02/2017 03/02/2017	LCS-6	03/02/2017	
Date analysed	-			04/02/2 017	161150-1	04/02/2017 04/02/2017	LCS-6	04/02/2017	
HCB	mg/kg	0.1	Org-005	<0.1	161150-1	<0.1 <0.1	[NR]	[NR]	
alpha-BHC	mg/kg	0.1	Org-005	<0.1	161150-1	<0.1 <0.1	LCS-6	96%	
gamma-BHC	mg/kg	0.1	Org-005	<0.1	161150-1	<0.1 <0.1	[NR]	[NR]	
beta-BHC	mg/kg	0.1	Org-005	<0.1	161150-1	<0.1 <0.1	LCS-6	110%	
Heptachlor	mg/kg	0.1	Org-005	<0.1	161150-1	<0.1 <0.1	LCS-6	101%	
delta-BHC	mg/kg	0.1	Org-005	<0.1	161150-1	<0.1 <0.1	[NR]	[NR]	
Aldrin	mg/kg	0.1	Org-005	<0.1	161150-1	<0.1 <0.1	LCS-6	100%	
Heptachlor Epoxide	mg/kg	0.1	Org-005	<0.1	161150-1	<0.1 <0.1	LCS-6	105%	
gamma-Chlordane	mg/kg	0.1	Org-005	<0.1	161150-1	<0.1 <0.1	[NR]	[NR]	
alpha-chlordane	mg/kg	0.1	Org-005	<0.1	161150-1	<0.1 <0.1	[NR]	[NR]	
Endosulfan I	mg/kg	0.1	Org-005	<0.1	161150-1	<0.1 <0.1	[NR]	[NR]	
pp-DDE	mg/kg	0.1	Org-005	<0.1	161150-1	<0.1 <0.1	LCS-6	112%	
Dieldrin	mg/kg	0.1	Org-005	<0.1	161150-1	<0.1 <0.1	LCS-6	113%	
Endrin	mg/kg	0.1	Org-005	<0.1	161150-1	<0.1 <0.1	LCS-6	119%	
pp-DDD	mg/kg	0.1	Org-005	<0.1	161150-1	<0.1 <0.1	LCS-6	99%	
Endosulfan II	mg/kg	0.1	Org-005	<0.1	161150-1	<0.1 <0.1	[NR]	[NR]	
pp-DDT	mg/kg	0.1	Org-005	<0.1	161150-1	<0.1 <0.1	[NR]	[NR]	
Endrin Aldehyde	mg/kg	0.1	Org-005	<0.1	161150-1	<0.1 <0.1	[NR]	[NR]	
Endosulfan Sulphate	mg/kg	0.1	Org-005	<0.1	161150-1	<0.1 <0.1	LCS-6	86%	
Methoxychlor	mg/kg	0.1	Org-005	<0.1	161150-1	<0.1 <0.1	[NR]	[NR]	
Surrogate TCMX	%		Org-005	116	161150-1	119 119 RPD:0	LCS-6	94%	

Client Reference: E27168KF, Chatswood									
QUALITY CONTROL Organophosphorus Pesticides	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results Base II Duplicate II %RPD	Spike Sm#	Spike % Recovery	
Date extracted	-			03/02/2	161150-1	03/02/2017 03/02/2017	LCS-6	03/02/2017	
Date analysed	-			04/02/2 017	161150-1	04/02/2017 04/02/2017	LCS-6	04/02/2017	
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-008	<0.1	161150-1	<0.1 <0.1	[NR]	[NR]	
Bromophos-ethyl	mg/kg	0.1	Org-008	<0.1	161150-1	<0.1 <0.1	[NR]	[NR]	
Chlorpyriphos	mg/kg	0.1	Org-008	<0.1	161150-1	<0.1 <0.1	LCS-6	103%	
Chlorpyriphos-methyl	mg/kg	0.1	Org-008	<0.1	161150-1	<0.1 <0.1	[NR]	[NR]	
Diazinon	mg/kg	0.1	Org-008	<0.1	161150-1	<0.1 <0.1	[NR]	[NR]	
Dichlorvos	mg/kg	0.1	Org-008	<0.1	161150-1	<0.1 <0.1	LCS-6	75%	
Dimethoate	mg/kg	0.1	Org-008	<0.1	161150-1	<0.1 <0.1	[NR]	[NR]	
Ethion	mg/kg	0.1	Org-008	<0.1	161150-1	<0.1 <0.1	LCS-6	92%	
Fenitrothion	mg/kg	0.1	Org-008	<0.1	161150-1	<0.1 <0.1	LCS-6	93%	
Malathion	mg/kg	0.1	Org-008	<0.1	161150-1	<0.1 <0.1	LCS-6	75%	
Parathion	mg/kg	0.1	Org-008	<0.1	161150-1	<0.1 <0.1	LCS-6	117%	
Ronnel	mg/kg	0.1	Org-008	<0.1	161150-1	<0.1 <0.1	LCS-6	121%	
Surrogate TCMX	%		Org-008	116	161150-1	119 119 RPD:0	LCS-6	115%	
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery	
PCBs in Soil						Base II Duplicate II % RPD			
Date extracted	-			03/02/2 017	161150-1	03/02/2017 03/02/2017	LCS-6	03/02/2017	
Date analysed	-			04/02/2 017	161150-1	04/02/2017 04/02/2017	LCS-6	04/02/2017	
Aroclor 1016	mg/kg	0.1	Org-006	<0.1	161150-1	<0.1 <0.1	[NR]	[NR]	
Aroclor 1221	mg/kg	0.1	Org-006	<0.1	161150-1	<0.1 <0.1	[NR]	[NR]	
Aroclor 1232	mg/kg	0.1	Org-006	<0.1	161150-1	<0.1 <0.1	[NR]	[NR]	
Aroclor 1242	mg/kg	0.1	Org-006	<0.1	161150-1	<0.1 <0.1	[NR]	[NR]	
Aroclor 1248	mg/kg	0.1	Org-006	<0.1	161150-1	<0.1 <0.1	[NR]	[NR]	
Aroclor 1254	mg/kg	0.1	Org-006	<0.1	161150-1	<0.1 <0.1	LCS-6	96%	
Aroclor 1260	mg/kg	0.1	Org-006	<0.1	161150-1	<0.1 <0.1	[NR]	[NR]	
Surrogate TCI MX	%		Org-006	116	161150-1	119 119 RPD:0	LCS-6	115%	

Client Reference: E27168KF, Chatswood									
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery	
Acid Extractable metals in soil						Base II Duplicate II % RPD			
Date prepared	-			03/02/2	161150-1	03/02/2017 03/02/2017	LCS-6	03/02/2017	
				017					
Date analysed	-			03/02/2 017	161150-1	03/02/2017 03/02/2017	LCS-6	03/02/2017	
Arsenic	mg/kg	4	Metals-020	<4	161150-1	5 7 RPD:33	LCS-6	111%	
Cadmium	mg/kg	0.4	Metals-020	<0.4	161150-1	<0.4 <0.4	LCS-6	100%	
Chromium	mg/kg	1	Metals-020	<1	161150-1	17 19 RPD:11	LCS-6	107%	
Copper	mg/kg	1	Metals-020	<1	161150-1	12 14 RPD:15	LCS-6	102%	
Lead	mg/kg	1	Metals-020	<1	161150-1	28 29 RPD:4	LCS-6	101%	
Mercury	mg/kg	0.1	Metals-021	<0.1	161150-1	<0.1 <0.1	LCS-6	89%	
Nickel	mg/kg	1	Metals-020	<1	161150-1	8 10 RPD:22	LCS-6	99%	
Zinc	mg/kg	1	Metals-020	<1	161150-1	41 40 RPD:2	LCS-6	100%	
QUALITY CONTROL vTRH(C6-C10)/BTEXNin Soil	UNITS	5	Dup. Sm#	Base+I	Duplicate Duplicate+%RP	Spike Sm# D	Spike % Reco	overy	
			101450.04	02/02/2	0471102/02/204	7 401450.0	02/02/201	7	
Date extracted	-		101100-21	03/02/2		7 161150-3	03/02/201	7	
Date analysed	-	_		00/02/2		7 101150-3	00/02/201	/	
TRHC6-C9	mg/ĸ		161150-21 <25 <25		101150-3	80%			
TRHC6 - C10	mg/kę		161150-21		<25 <25	161150-3	86%		
Benzene	mg/ko	g ^	161150-21		<0.2 <0.2	161150-3	89%		
Toluene	mg/ko	g ,	161150-21	<0.5 <0.5		161150-3	86%		
Ethylbenzene	mg/kợ	g ^	161150-21		<1 <1	161150-3	82%		
m+p-xylene	mg/kę	g ^	161150-21		<2 <2	161150-3	87%		
o-Xylene	mg/kę	g í	161150-21		<1 <1	161150-3	85%		
naphthalene	mg/kợ	g /	161150-21		<1 <1	[NR]	[NR]		
<i>Surrogate</i> aaa- Trifluorotoluene	%		161150-21	107	116 RPD:8	161150-3	98%		
QUALITY CONTROL svTRH (C10-C40) in Soil	UNITS	6	Dup. Sm#	Base+I	Duplicate Duplicate+%RP	Spike Sm#	Spike % Reco	overy	
Date extracted	_		161150-21	03/02/2	017 03/02/201	7 161150-3	03/02/201	7	
Date analysed	_		161150-21	03/02/2	017 03/02/201	7 161150-3	03/02/201	7	
	ma/ka		161150-21		<50 <50	161150-3	99%		
	ma/ka		161150-21		:100 <100	161150-3	108%		
	ma/ka	, ,	161150-21		:100 <100	161150-3	94%		
TRH>C10-C16	ma/ka	,	161150-21		<50 <50	161150-3	99%		
TRH>C16-C34	ma/ka	-	161150-21	<	:100 <100	161150-3	108%		
TRH>C:4-C.40	ma/ka	- - / /	161150-21		:100 <100	161150-3	94%		
Surrogate o-Terphenyl	%		161150-21	105	 102 RPD:3	161150-3	109%		

QUALITY CONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
FARSINSON					
Date extracted	-	161150-21	03/02/2017 03/02/2017	161150-3	03/02/2017
Date analysed	-	161150-21	03/02/2017 03/02/2017	161150-3	03/02/2017
Naphthalene	mg/kg	161150-21	<0.1 <0.1	161150-3	93%
Acenaphthylene	mg/kg	161150-21	<0.1 <0.1	[NR]	[NR]
Acenaphthene	mg/kg	161150-21	<0.1 <0.1	[NR]	[NR]
Fluorene	mg/kg	161150-21	<0.1 <0.1	161150-3	96%
Phenanthrene	mg/kg	161150-21	<0.1 <0.1	161150-3	100%
Anthracene	mg/kg	161150-21	<0.1 <0.1	[NR]	[NR]
Fluoranthene	mg/kg	161150-21	<0.1 <0.1	161150-3	96%
Pyrene	mg/kg	161150-21	<0.1 <0.1	161150-3	101%
Benzo(a)anthracene	mg/kg	161150-21	<0.1 <0.1	[NR]	[NR]
Chrysene	mg/kg	161150-21	<0.1 <0.1	161150-3	90%
Benzo(b,j+k)fluoranthene	mg/kg	161150-21	<0.2 <0.2	[NR]	[NR]
Benzo(a)pyrene	mg/kg	161150-21	<0.05 <0.05	161150-3	108%
Indeno(1,2,3-c,d)pyrene	mg/kg	161150-21	<0.1 <0.1	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	161150-21	<0.1 <0.1	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	161150-21	<0.1 <0.1	[NR]	[NR]
Surrogate p-Terphenyl-d14	%	161150-21	113 112 RPD:1	161150-3	120%
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
Organochlorine Pesticides			Base + Duplicate + % RPD		
Date extracted	-	161150-21	03/02/2017 03/02/2017	161150-3	03/02/2017
Date analysed	-	161150-21	04/02/2017 04/02/2017	161150-3	04/02/2017
HCB	mg/kg	161150-21	<0.1 <0.1	[NR]	[NR]
alpha-BHC	mg/kg	161150-21	<0.1 <0.1	161150-3	94%
gamma-BHC	mg/kg	161150-21	<0.1 <0.1	[NR]	[NR]
beta-BHC	mg/kg	161150-21	<0.1 <0.1	161150-3	106%
Heptachlor	mg/kg	161150-21	<0.1 <0.1	161150-3	99%
delta-BHC	mg/kg	161150-21	<0.1 <0.1	[NR]	[NR]
Aldrin	mg/kg	161150-21	<0.1 <0.1	161150-3	95%
Heptachlor Epoxide	mg/kg	161150-21	<0.1 <0.1	161150-3	100%
gamma-Chlordane	mg/kg	161150-21	<0.1 <0.1	[NR]	[NR]
alpha-chlordane	mg/kg	161150-21	<0.1 <0.1	[NR]	[NR]
Endosulfan I	mg/kg	161150-21	<0.1 <0.1	[NR]	[NR]
pp-DDE	mg/kg	161150-21	<0.1 <0.1	161150-3	108%
Dieldrin	mg/kg	161150-21	<0.1 <0.1	161150-3	108%
Endrin	mg/kg	161150-21	<0.1 <0.1	161150-3	104%
pp-DDD	mg/kg	161150-21	<0.1 <0.1	161150-3	102%
EndosulfanII	mg/kg	161150-21	<0.1 <0.1	[NR]	[NR]

E27168KF, Chatswood

mg/kg

mg/kg

mg/kg

161150-21

161150-21

161150-21

<0.1||<0.1

<0.1||<0.1

<0.1||<0.1

pp-DDT

Endrin Aldehyde

Endosulfan Sulphate

[NR]

[NR]

87%

[NR]

[NR]

161150-3

Client Reference: E27168KF, Chatswood									
QUALITY CONTROL Organochlorine Pesticides in soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery				
Methoxychlor	mg/kg	161150-21	<0.1 <0.1	[NR]	[NR]				
Surrogate TCMX	%	161150-21	122 119 RPD:2	161150-3	95%				
QUALITYCONTROL Organophosphorus Pesticides	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery				
Date extracted	-	161150-21	03/02/2017 03/02/2017	161150-3	03/02/2017				
Date analysed	-	161150-21	04/02/2017 04/02/2017	161150-3	04/02/2017				
Azinphos-methyl (Guthion)	mg/kg	161150-21	<0.1 <0.1	[NR]	[NR]				
Bromophos-ethyl	mg/kg	161150-21	<0.1 <0.1	[NR]	[NR]				
Chlorpyriphos	mg/kg	161150-21	<0.1 <0.1	161150-3	102%				
Chlorpyriphos-methyl	mg/kg	161150-21	<0.1 <0.1	[NR]	[NR]				
Diazinon	mg/kg	161150-21	<0.1 <0.1	[NR]	[NR]				
Dichlorvos	mg/kg	161150-21	<0.1 <0.1	161150-3	78%				
Dimethoate	mg/kg	161150-21	<0.1 <0.1	[NR]	[NR]				
Ethion	mg/kg	161150-21	<0.1 <0.1	161150-3	86%				
Fenitrothion	mg/kg	161150-21	<0.1 <0.1	161150-3	86%				
Malathion	mg/kg	161150-21	<0.1 <0.1	161150-3	75%				
Parathion	mg/kg	161150-21	<0.1 <0.1	161150-3	107%				
Ronnel	mg/kg	161150-21	<0.1 <0.1	161150-3	120%				
Surrogate TCMX	%	161150-21	122 119 RPD:2	161150-3	117%				
QUALITY CONTROL PCBs in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery				
Date extracted	-	161150-21	03/02/2017 03/02/2017	161150-3	03/02/2017				
Date analysed	-	161150-21	04/02/2017 04/02/2017	161150-3	04/02/2017				
Aroclor 1016	mg/kg	161150-21	<0.1 <0.1	[NR]	[NR]				
Aroclor 1221	mg/kg	161150-21	<0.1 <0.1	[NR]	[NR]				
Aroclor 1232	mg/kg	161150-21	<0.1 <0.1	[NR]	[NR]				
Aroclor 1242	mg/kg	161150-21	<0.1 <0.1	[NR]	[NR]				
Aroclor 1248	mg/kg	161150-21	<0.1 <0.1	[NR]	[NR]				
Aroclor 1254	mg/kg	161150-21	<0.1 <0.1	161150-3	98%				
Aroclor 1260	mg/kg	161150-21	<0.1 <0.1	[NR]	[NR]				
Surrogate TCLMX	%	161150-21	122 119 RPD:2	161150-3	117%				

		Client Reference	e: E27168KF, Chatsv	vood	
QUALITY CONTROL Acid Extractable metals in	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
soil					
Date prepared	-	161150-21	03/02/2017 03/02/2017	161150-3	03/02/2017
Date analysed	-	161150-21	03/02/2017 03/02/2017	161150-3	03/02/2017
Arsenic	mg/kg	161150-21	<4 <4	161150-3	99%
Cadmium	mg/kg	161150-21	<0.4 <0.4	161150-3	96%
Chromium	mg/kg	161150-21	11 20 RPD: 58	161150-3	114%
Copper	mg/kg	161150-21	6 7 RPD:15	161150-3	103%
Lead	mg/kg	161150-21	31 40 RPD: 25	161150-3	95%
Mercury	mg/kg	161150-21	<0.1 <0.1	161150-3	91%
Nickel	mg/kg	161150-21	4 5 RPD:22	161150-3	103%
Zinc	mg/kg	161150-21	39 43 RPD:10	161150-3	92%
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate		
Acid Extractable metals in soil			Base + Duplicate + %RPD		
Date prepared	-	161150-33	03/02/2017 03/02/2017		
Date analysed	-	161150-33	03/02/2017 03/02/2017		
Arsenic	mg/kg	161150-33	12 16 RPD:29		
Cadmium	mg/kg	161150-33	1 1 RPD:0		
Chromium	mg/kg	161150-33	19 24 RPD:23		
Copper	mg/kg	161150-33	57 230 RPD: 121		
Lead	mg/kg	161150-33	800 1500 RPD:61		
Mercury	mg/kg	161150-33	<0.1 <0.1		
Nickel	mg/kg	161150-33	9 33 RPD:114		
Zinc	mg/kg	161150-33	780 640 RPD:20		

Report Comments:

Acid Extractable Metals in Soil: The laboratory RPD acceptance criteria has been exceeded for 161150-21 for Cr. Therefore a triplicate result has been issued as laboratory sample number 161150-40.

Asbestos: Excessive sample volume was provided for asbestos analysis. A portion of the supplied sample was sub-sampled according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g (50mL) of sample in its own container as per AS4964-2004.

Note: Samples 161150-3, 8, 10, 12, & 14were sub-sampled from bags provided by the client.

Acid Extractable Metals in Soil: The laboratory RPD acceptance criteria has been exceeded for 161150-33 for Cu, Pb, Ni. Therefore a triplicate result has been issued as laboratory sample number 161150-41.

Asbestos ID was analysed by Approved Identifier: Asbestos ID was authorised by Approved Signatory: Paul Ching, Lucy Zhu Paul Ching

INS: Insufficient sample for this test NR: Test not required <: Less than PQL: Practical Quantitation Limit RPD: Relative Percent Difference >: Greater than NT: Not tested NA: Test not required LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Environmental Investigation Services
Attention	Geoff Fletcher

Sample Login Details	
Your Reference	E27168KF, Chatswood
Envirolab Reference	161150
Date Sample Received	01/02/2017
Date Instructions Received	01/02/2017
Date Results Expected to be Reported	08/02/2017

Sample Condition							
Samples received in appropriate condition for analysis	YES						
No. of Samples Provided	1 material 38 soils						
Turnaround Time Requested	Standard						
Temperature on receipt (°C)	19.3						
Cooling Method	Ice						
Sampling Date Provided	YES						

Comments Samples will be held for 1 month for water samples and 2 months for soil samples from date of receipt of samples missing BH109 0.65-0.8

Please direct any queries to:

Aileen Hie	Jacinta Hurst					
Phone: 02 9910 6200	Phone: 02 9910 6200					
Fax: 02 9910 6201	Fax: 02 9910 6201					
Email: ahie@envirolabservices.com.au	Email: jhurst@envirolabservices.com.au					

Sample and Testing Details on following page

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

Sample Id	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides	PCBs in Soil	Acid Extractable metals in soil	Asbestos ID - soils	Asbestos ID - materials	On Hold
BH101-0.1-0.2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
BH101-0.5-										\checkmark
0.95										
BH102-0.1-0.2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
BH103-00.1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
BH104-0.0-0.1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
BH104-0.5- 0.95										\checkmark
BH104-1.5-										\checkmark
BH105-0.1-0.2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
BH105-0.5-0.6										\checkmark
BH106-0.05-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
0.3										,
BH106-0.4-0.7			,	,	,	,		,		\checkmark
BH107-0.05- 0.2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
BH107-0.3-0.6										\checkmark
BH108-0.05-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
0.2 BH108-0 3-0 6										/
BH109-0.05-	/	/	/	/	/	/	/	1		V
0.2	~	v	~	v	v	v	v	v		
BH109-0.5- 0.65										\checkmark
BH109-0.8-1.1										\checkmark
BH110-0.1-0.3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
BH110-0.4-0.6										\checkmark
BH111-0.06- 0.25	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
BH111-0.5-										\checkmark
0.95										,
вн111-1.6-1.5										\checkmark
вн111-1.65- 1.8										\checkmark
BH112-0.1-0.3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
BH112-0.5-										\checkmark
0.95 BH112-1.5-										1
1.95										v
BH112-2.7-3.0										\checkmark

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

Sample Id	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides	PCBs in Soil	Acid Extractable metals in soil	Asbestos ID - soils	Asbestos ID - materials	On Hold							
BH113-0.1-0.3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark									
BH113-0.4-0.7										\checkmark							
BH114-0-0.2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark									
BH114-0.5- 0.95										\checkmark							
BH114-1.5-1.9	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark									
BH114-2.7-3.0										\checkmark							
BH115-0-0.2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark									
DUPGF1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark										
DUPGF2										\checkmark							
TBS	\checkmark																
GFF1									\checkmark								
	2.2				SAN	IPLE AI	ND CHAIN (OF CUST	ODY F	ORM							
--	--------------	-------------	---------------------------------------	---------------------------	---------------------	---------	-----------------------	--	--	--	------------------------	------------------------	---------------	-----------	---------	----------------	-------------
<u>TO:</u> ENVIROLAB SERVICES PTY LTD 12 ASHLEY STREET CHATSWOOD NSW 2067 P: (02) 99106200 F: (02) 99106201			EIS Jol Numbe Date R Require	b er: esults ed:	E27168KF	D			FROM: ENVIRONM INVESTIGA SERVICES REAR OF 1 MACQUAR P: 02-9888	IENTAL ATION 15 WIC RIE PAR 3 5000	CKS RC K, NSV F:	DAD V 2113 02-98	88 50	15			
Atten	10011. P	Alleen	1000	110	Page:		107	2			Attention:		Geo	off Fleto	cher		
Locat	tion:	Chat	swood							Sam	ple Preserve	d in Es	ky on I	ce			
Samp	oler:	DAF	+ GF	1	1			Tests Required						191 121			
D San	ate npled	Lab Ref:	Sample Number	Depth (m)	Sample Container	PID	Sample Description		Combo 6	Combo 6a			BTEX	Aspestos			
30/1	117	1	BHIOI	0.1-	G.A	0	Fill			X					-		
		2	4	0.5-	- 1	0											
	•	3	BH 102	0.1-		0			5	X							
51/1	117	4	BH103	0.0-1		0				X							
1		5	BH104	0.0-		0				X							
		6	1	0.5-		0											
		7		1.5-1.95		0											
		8	BHID 5	0.1-		D				\checkmark							
,		9	1	0.5-		0											
12	17	10	BHIDH	0.05-		0	TU			V					1		
+ +		n	1	0.4-		0	Seld.			~							
		12	RUIDT	0.05-		0	Ell	·		~				1 1000		21.5	
		13	L	0.3-		0	Scaling			^							
		14	BHIOS	0.05-		0	EY/			V							
		15	1	0.2		0	Fill Scalelon			~			-	E	nviroia	b Servi	ices
		16	211.109	0.05-		0	TY					ENVI	ROLAB	Cha	1	Ashlej NSW2	/ St 067
		17	DHIOT	0.2		0	HII I			X		Job	ND:	P	1: (02)	99106	200
1 State	- States	NR		0.65	•	0	C I I	1.2				Date	6115 Recei	Ved:	-	2/1-7	
1949.2		10		0.8	4	0	Schargelay					Tme	Rece	ived: I	0	5''T	19
		10	BHUO	0.120.2	4	0	Jondstend					Tem	coo	y SK	ant		
		20	1	0.4-	41A	0				X		Cool	ing: Ico	e/ cepa	ck		
		21	*	0.06-		0	Jundstone			-		Secu	iny (in	ACUBI	oken/	None	
		20	OH III	0.25		0	HII			X							
-		20		0.95		0	C. J. i										
-		23		1.5		0	shay they										
mark	s (com	iments	/detection lim	its required):	4	0	Soudstand	Sample Co G - 250mg A - Ziploci P - Plastic	ontainer g Glass k Asbes Bag	s: Jar tos Ba	ug						
linqu	ished E	By:			Date:			Time: 16:00	249	F	Received By: SK			Date	02/1	7	

161150

	and we				SAMP	LE AN	D CHAIN OF	cus	TODY F	DRM	and the				
TO: ENVIROLAB SERVICES PTY LTD 12 ASHLEY STREET CHATSWOOD NSW 2067 P: (02) 99106200 F: (02) 99106201 Attention: Aileen			EIS Job E27168KF Number: Date Results STANDARD Required: Page: 2 • f 2			2		FROM: ENVIRONME INVESTIGAT SERVICES REAR OF 11 MACQUARIE P: 02-9888 5 Attention:	FROM: ENVIRONMENTAL INVESTIGATION SERVICES REAR OF 115 WICKS ROAD MACQUARIE PARK, NSW 2113 P: 02-9888 5000 F: 02-9888 5001 Attention: Geoff Fletcher						
		0				Sample Preserved in F					in Esky on Ice				
Sam	oler:	DAF	+ GF							Jan	Tests Red	quired			-
E Sai)ate mpled	Lab Ref:	Sample Number	Depth (m)	Sample Container	PID	Sample Description		Combo 6	Combo 6 Combo 6a		BTEX	Asbestos		
1/2	117	25	BH112	0.1-	L.A	0	Fill			×					
1		26		05-0.95	1	0	1		46						
	4	27	1.2	1.5-1.95		0	•					and the second			
		28		2.7- 3.0		0	Scudstone								1
	and the second sec	29	BHII3	0.1-0.3		0	F:11			X	land in				1
		30	ł	0.4-		0	Sandstone								
		31	BH 114	0-0.2		0	Fill			×					
		32		0.50.95		0								i ar	
		33		1.5-1.95		0	V			×				1	
		34		2.7 3.0		0	Sandstone								
		35	BHIIS	0-0.2	•	0	Fill			X					
iun di		36	Dp4F1		4				×						
		37	Rp4F2			-			X	1	10				0.5,5
	+	38	TBS	-	4	-						×			
30	1/17	39	GFF 1		A	-	Material						X.		
				1.14	•		-								
				2 10 1	1										
ante:		2													-
	1								nte serie						
Rema	rks (coi	mments	 s/detection lin	nits required)				Sampl G - 25 A - Zij P - Pla	le Containe 50mg Glas plock Asbe astic Bag	ers: s Jar estos I	Bag				e.
Relind	quished	By:			Date:			Time:			Received By:			Date:	

email: sydney@envirolab.com.au envirolab.com.au

Envirolab Services Pty Ltd - Sydney | ABN 37 112 535 645

CERTIFICATE OF ANALYSIS

161150-A

/ 08/02/17

E27168KF, Chatswood

01/02/17

Additional Testing on 12 Soils

Client: Environmental Investigation Services PO Box 976 North Ryde BC NSW 1670

Attention: Geoff Fletcher

Sample log in details:

Your Reference: No. of samples: Date samples received / completed instructions received

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. Please refer to the last page of this report for any comments relating to the results.

Report Details:

Date results requested by: / Issue Date: 15/02/17 14/02/17 / Date of Preliminary Report: Not Issued NATA accreditation number 2901. This document shall not be reproduced except in full. Accredited for compliance with ISO/IEC 17025 - Testing Tests not covered by NATA are denoted with *.

Results Approved By:

David Springer General Manager

vTRH(C6-C10)/BTEXN in Soil Our Reference: Your Reference	UNITS 	161150-A-7 BH104	161150-A-13 BH107	161150-A-18 BH109	161150-A-23 BH111	161150-A-27 BH112
Depth Date Sampled Type of sample		1.5-1.95 31/01/2017 SOIL	0.3-0.6 1/02/2017 SOIL	0.8-1.1 1/02/2017 SOIL	1.3-1.5 1/02/2017 SOIL	1.5-1.95 1/02/2017 SOIL
Date extracted	-	09/02/2017	09/02/2017	09/02/2017	09/02/2017	09/02/2017
Date analysed	-	10/02/2017	10/02/2017	10/02/2017	10/02/2017	10/02/2017
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	86	85	83	81	89

vTRH(C6-C10)/BTEXN in Soil				
Our Reference:	UNITS	161150-A-28	161150-A-30	161150-A-34
Your Reference		BH112	BH113	BH114
	-			
Depth		2.7-3.0	0.4-0.7	2.7-3.0
Date Sampled		1/02/2017	1/02/2017	1/02/2017
l ype of sample		SOIL	SOIL	SOIL
Date extracted	-	09/02/2017	09/02/2017	09/02/2017
Date analysed	-	10/02/2017	10/02/2017	10/02/2017
TRHC6 - C9	mg/kg	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	89	86	84

E27168KF, Chatswood

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	161150-A-7	161150-A-13	161150-A-18	161150-A-23	161150-A-27
Your Reference		BH104	BH107	BH109	BH111	BH112
	-					
Depth		1.5-1.95	0.3-0.6	0.8-1.1	1.3-1.5	1.5-1.95
Date Sampled		31/01/2017	1/02/2017	1/02/2017	1/02/2017	1/02/2017
l ype of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date extracted	-	09/02/2017	09/02/2017	09/02/2017	09/02/2017	09/02/2017
Date analysed	-	10/02/2017	10/02/2017	10/02/2017	10/02/2017	10/02/2017
TRHC 10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC 29 - C36	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Total+veTRH(>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	77	80	78	78	79
	I			Γ	1	
svTRH (C10-C40) in Soil						
Our Reference:	UNITS	161150-A-28	161150-A-30	161150-A-34		
Your Reference		BH112	BH113	BH114		
Depth	-	27-30	0 4-0 7	27-30		
Date Sampled		1/02/2017	1/02/2017	1/02/2017		
Type of sample		SOIL	SOIL	SOIL		
Date extracted	-	09/02/2017	09/02/2017	09/02/2017		

10/02/2017

<50

<100

<100

<50

<50

<100

<100

<50

78

10/02/2017

<50

<100

<100

<50

<50

<100

<100

<50

78

10/02/2017

<50

<100

<100

<50

<50

<100

<100

<50

80

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

%

Date analysed

TRHC 10 - C 14

TRHC 15 - C28

TRHC 29 - C 36

TRH>C10-C16

TRH>C10 - C16 less

TRH>C34-C40

Total+veTRH (>C10-C40)

Surrogate o-Terphenyl

Naphthalene (F2) TRH>C16-C34

PAHs in Soil						
Our Reference:	UNITS	161150-A-7	161150-A-13	161150-A-18	161150-A-23	161150-A-27
Your Reference		BH104	BH107	BH109	BH111	BH112
Depth		1.5-1.95	0.3-0.6	0.8-1.1	1.3-1.5	1.5-1.95
Date Sampled		31/01/2017	1/02/2017	1/02/2017	1/02/2017	1/02/2017
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date extracted	-	09/02/2017	09/02/2017	09/02/2017	09/02/2017	09/02/2017
Date analysed	-	09/02/2017	09/02/2017	09/02/2017	09/02/2017	09/02/2017
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	0.2	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	0.2	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	0.07	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	mg/kg	<0.05	<0.05	0.72	<0.05	<0.05
Surrogate p-Terphenyl-d14	%	80	87	86	85	94

PAHs in Soil		404450 4 00	101150 1 00	101150 1 04
Our Reference:	UNITS	161150-A-28	161150-A-30	161150-A-34
Four Reference		BHITZ	BHII3	BH114
Depth		2.7-3.0	0.4-0.7	2.7-3.0
Date Sampled		1/02/2017	1/02/2017	1/02/2017
Type of sample		SOIL	SOIL	SOIL
Date extracted	-	09/02/2017	09/02/2017	09/02/2017
Date analysed	-	09/02/2017	09/02/2017	09/02/2017
Naphthalene	mg/kg	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05
Surrogate p-Terphenyl-d14	%	93	88	93

Organochlorine Pesticides in soil				
Our Reference:	UNITS	161150-A-23	161150-A-30	161150-A-34
Your Reference		BH111	BH113	BH114
Depth Date Sampled Type of sample		1.3-1.5 1/02/2017 SOIL	0.4-0.7 1/02/2017 SOIL	2.7-3.0 1/02/2017 SOIL
Date extracted	-	09/02/2017	09/02/2017	09/02/2017
Date analysed	-	09/02/2017	09/02/2017	09/02/2017
HCB	mg/kg	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1
Total+veDDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1
Surrogate TCMX	%	89	89	89

Organophosphorus Pesticides				
Our Reference:	UNITS	161150-A-23	161150-A-30	161150-A-34
Your Reference		BH111	BH113	BH114
	-			
Depth		1.3-1.5	0.4-0.7	2.7-3.0
Date Sampled		1/02/2017	1/02/2017	1/02/2017
l ype of sample		SOIL	SOIL	SOIL
Date extracted	-	09/02/2017	09/02/2017	09/02/2017
Date analysed	-	09/02/2017	09/02/2017	09/02/2017
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1
Surrogate TCMX	%	89	89	89

PCBs in Soil				
Our Reference:	UNITS	161150-A-23	161150-A-30	161150-A-34
Your Reference		BH111	BH113	BH114
	-			
Depth		1.3-1.5	0.4-0.7	2.7-3.0
Date Sampled		1/02/2017	1/02/2017	1/02/2017
Type of sample		SOIL	SOIL	SOIL
Date extracted	-	09/02/2017	09/02/2017	09/02/2017
Date analysed	-	09/02/2017	09/02/2017	09/02/2017
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1
Surrogate TCLMX	%	89	89	89

Acid Extractable metals in soil						
Our Reference:	UNITS	161150-A-7	161150-A-13	161150-A-18	161150-A-23	161150-A-27
Your Reference		BH104	BH107	BH109	BH111	BH112
	-					
Depth		1.5-1.95	0.3-0.6	0.8-1.1	1.3-1.5	1.5-1.95
Date Sampled		31/01/2017	1/02/2017	1/02/2017	1/02/2017	1/02/2017
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date prepared	-	09/02/2017	09/02/2017	09/02/2017	09/02/2017	09/02/2017
Date analysed	-	10/02/2017	10/02/2017	10/02/2017	10/02/2017	10/02/2017
Arsenic	mg/kg	8	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	18	11	11	19	6
Copper	mg/kg	6	1	6	<1	7
Lead	mg/kg	31	4	31	12	66
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	2	<1	3	1	1
Zinc	mg/kg	19	8	160	6	49

Acid Extractable metals in soil				
Our Reference:	UNITS	161150-A-28	161150-A-30	161150-A-34
Your Reference		BH112	BH113	BH114
	-			
Depth		2.7-3.0	0.4-0.7	2.7-3.0
Date Sampled		1/02/2017	1/02/2017	1/02/2017
Type of sample		SOIL	SOIL	SOIL
Date prepared	-	09/02/2017	09/02/2017	09/02/2017
Date analysed	-	10/02/2017	10/02/2017	10/02/2017
Arsenic	mg/kg	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4
Chromium	mg/kg	6	5	6
Copper	mg/kg	4	2	<1
Lead	mg/kg	22	6	9
Mercury	mg/kg	<0.1	<0.1	<0.1
Nickel	mg/kg	<1	<1	<1
Zinc	mg/kg	51	4	2

Misc Inorg - Soil			
Our Reference:	UNITS	161150-A-16	161150-A-33
Your Reference		BH109	BH114
	-		
Depth		0.05-0.2	1.5-1.95
Date Sampled		1/02/2017	1/02/2017
Type of sample		SOIL	SOIL
Date propared	_	13/02/2017	13/02/2017
Date prepared	-	13/02/2017	13/02/2017
Date analysed	-	13/02/2017	13/02/2017
pH 1:5 soil:water	pH Units	8.2	8.5

Clov 50 120g			
Our Reference:	UNITS	161150-A-16	161150-A-33
Your Reference		BH109	BH114
	-		
Depth		0.05-0.2	1.5-1.95
Date Sampled		1/02/2017	1/02/2017
Type of sample		SOIL	SOIL
Date prepared	-	10/02/2017	10/02/2017
Dateproparea		10/02/2011	10/02/2011
Date analysed	-	13/02/2017	13/02/2017
Clay in soils <2µm	% (w/w)	14	9

CEC			
Our Reference:	UNITS	161150-A-16	161150-A-33
Your Reference		BH109	BH114
	-		
Depth		0.05-0.2	1.5-1.95
Date Sampled		1/02/2017	1/02/2017
Type of sample		SOIL	SOIL
Date prepared	-	14/02/2017	14/02/2017
Date analysed	_	14/02/2017	14/02/2017
			14/02/2011
ExchangeableCa	meq/100g	5.9	16
ExchangeableK	meq/100g	0.1	0.4
ExchangeableMg	meq/100g	1.3	0.79
ExchangeableNa	meq/100g	0.70	0.16
Cation Exchange Capacity	meq/100g	8.0	18

Moisture						
Our Reference:	UNITS	161150-A-7	161150-A-13	161150-A-18	161150-A-23	161150-A-27
Your Reference		BH104	BH107	BH109	BH111	BH112
Depth Date Sampled Type of sample		1.5-1.95 31/01/2017 SOIL	0.3-0.6 1/02/2017 SOIL	0.8-1.1 1/02/2017 SOIL	1.3-1.5 1/02/2017 SOIL	1.5-1.95 1/02/2017 SOIL
Date prepared	-	09/02/2017	09/02/2017	09/02/2017	09/02/2017	09/02/2017
Date analysed	-	10/02/2017	10/02/2017	10/02/2017	10/02/2017	10/02/2017
Moisture	%	16	7.5	5.8	17	4.8
		- -			1	•

Moisture				
Our Reference:	UNITS	161150-A-28	161150-A-30	161150-A-34
Your Reference		BH112	BH113	BH114
	-			
Depth		2.7-3.0	0.4-0.7	2.7-3.0
Date Sampled		1/02/2017	1/02/2017	1/02/2017
Type of sample		SOIL	SOIL	SOIL
Date prepared	-	09/02/2017	09/02/2017	09/02/2017
Date analysed	-	10/02/2017	10/02/2017	10/02/2017
Moisture	%	4.7	5.6	5.2

Asbestos ID - soils			
Our Reference:	UNITS	161150-A-7	161150-A-27
Your Reference		BH104	BH112
	-		
Depth		1.5-1.95	1.5-1.95
Date Sampled		31/01/2017	1/02/2017
Type of sample		SOIL	SOIL
Date analysed	-	10/02/2017	10/02/2017
Sample mass tested	g	Approx. 35g	Approx. 20g
Sample Description	-	Brown sandy	Brown sandy
		soil	soil
Asbestos ID in soil	-	No asbestos	No asbestos
		detected at	detected at
		reporting limit of	reporting limit of
		0.1g/kg	0.1g/kg
		Organic fibres	Organic fibres
		detected	detected
Trace Analysis	-	No asbestos	No asbestos
		detected	detected

Metals in TCLP USEPA1311					
Our Reference:	UNITS	161150-A-1	161150-A-16	161150-A-29	161150-A-33
Your Reference		BH101	BH109	BH113	BH114
	-				
Depth		0.1-0.2	0.05-0.2	0.1-0.3	1.5-1.95
Date Sampled		30/01/2017	1/02/2017	1/02/2017	1/02/2017
Type of sample		SOIL	SOIL	SOIL	SOIL
Date extracted	-	10/02/2017	10/02/2017	10/02/2017	10/02/2017
Date analysed	-	[NA]	[NA]	10/02/2017	10/02/2017
pH of soil for fluid# determ.	pH units	6.5	7.2	8.0	7.9
pH of soil TCLP (after HCI)	pH units	1.5	1.3	1.5	1.5
Extraction fluid used	-	1	1	1	1
pH of final Leachate	pH units	4.9	4.9	4.9	5.1
Lead in TCLP	mg/L	[NA]	[NA]	0.04	1.4
Nickel in TCLP	mg/L	[NA]	[NA]	[NA]	<0.02

PAHs in TCLP (USEPA 1311)			
Our Reference:	UNITS	161150-A-1	161150-A-16
Your Reference		BH101	BH109
Donth	-	0400	0.05.0.0
Depth Dete Sempled		0.1-0.2	0.05-0.2
Date Sampled		30/01/2017 SOII	1/02/2017 SOII
Date extracted	-	13/02/2017	13/02/2017
Date analysed	-	13/02/2017	13/02/2017
Naphthalene in TCLP	mg/L	<0.001	<0.001
AcenaphthyleneinTCLP	mg/L	<0.001	<0.001
AcenaphtheneinTCLP	mg/L	<0.001	<0.001
Fluorene in TCLP	mg/L	<0.001	<0.001
Phenanthrene in TCLP	mg/L	<0.001	<0.001
Anthracene in TCLP	mg/L	<0.001	<0.001
Fluoranthene in TCLP	mg/L	<0.001	<0.001
Pyrene in TCLP	mg/L	<0.001	<0.001
Benzo(a)anthracene in TCLP	mg/L	<0.001	<0.001
Chrysene in TCLP	mg/L	<0.001	<0.001
Benzo(bjk)fluoranthene in TCLP	mg/L	<0.002	<0.002
Benzo(a)pyrene in TCLP	mg/L	<0.001	<0.001
Indeno(1,2,3-c,d)pyrene - TCLP	mg/L	<0.001	<0.001
Dibenzo(a,h)anthracene in TCLP	mg/L	<0.001	<0.001
Benzo(g,h,i)perylene in TCLP	mg/L	<0.001	<0.001
Total +ve PAH's	mg/L	NIL(+)VE	NIL(+)VE
Surrogate p-Terphenyl-d14	%	105	99

Client Reference: E27168KF, Chatswood

Method ID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes"
	is simply a sum of the positive individual Xylenes.
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
	For soil results:- 1. 'TEQ PQL' values are assuming all contributing PAHs reported as <pql actually="" are="" at="" is="" pql.="" the="" the<br="" this="">most conservative approach and can give false positive TEQs given that PAHs that contribute to the TEQ calculation may not be present.</pql>
	2. 'TEQ zero' values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<="" present="" susceptible="" td="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""></pql>
	3. 'TEQ half PQL' values are assuming all contributing PAHs reported as <pql are="" half="" pql.<br="" stipulated="" the="">Hence a mid-point between the most and least conservative approaches above.</pql>
	Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PAHs" is simply a sum of the positive individual PAHs.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-008	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
	Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.

Client Reference: E27168KF, Chatswood

MethodID	Methodology Summary
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
AS1289.3.6.3	Determination Particle Size Analysis using AS1289.3.6.3 and AS1289.3.6.1 and in house method INORG-107. Clay fraction at $<2\mu$ m reported.
Metals-009	Determination of exchangeable cations and cation exchange capacity in soils using 1M Ammonium Chloride exchange and ICP-AES analytical finish.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
Inorg-004	Toxicity Characteristic Leaching Procedure (TCLP) using in house method INORG-004.
EXTRACT.7	Toxicity Characteristic Leaching Procedure (TCLP) using Zero Headspace Extraction (zHE) using AS4439 and USEPA 1311.
Metals-020 ICP- AES	Determination of various metals by ICP-AES.
Org-012	Leachates are extracted with Dichloromethane and analysed by GC-MS.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.

Client Reference: E27168KF, Chatswood								
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
vTRH(C6-C10)/BTEXNin Soil						Base II Duplicate II % RPD		
Date extracted	-			09/02/2 017	[NT]	[NT]	LCS-5	09/02/2017
Date analysed	-			10/02/2 017	[NT]	[NT]	LCS-5	10/02/2017
TRHC6 - C9	mg/kg	25	Org-016	<25	[NT]	[NT]	LCS-5	105%
TRHC6 - C10	mg/kg	25	Org-016	<25	[NT]	[NT]	LCS-5	105%
Benzene	mg/kg	0.2	Org-016	<0.2	[NT]	[NT]	LCS-5	95%
Toluene	mg/kg	0.5	Org-016	<0.5	[NT]	[NT]	LCS-5	101%
Ethylbenzene	mg/kg	1	Org-016	<1	[NT]	[NT]	LCS-5	107%
m+p-xylene	mg/kg	2	Org-016	~2	[NT]	[NT]	LCS-5	110%
o-Xylene	mg/kg	1	Org-016	<1	[NT]	[NT]	LCS-5	112%
naphthalene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
Surrogate aaa- Trifluorotoluene	%		Org-016	88	[NT]	[NT]	LCS-5	87%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
svTRH (C10-C40) in Soil					SII#	Base II Duplicate II % RPD		Recovery
 Date extracted	_			09/02/2	INTI	[NT]	1.08-5	09/02/2017
Date extracted				017	[[41]	[(1)]	200 5	00/02/2011
Date analysed	-			09/02/2 017	[NT]	[NT]	LCS-5	09/02/2017
TRHC 10 - C14	mg/kg	50	Org-003	<50	[NT]	[NT]	LCS-5	103%
TRHC 15 - C28	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-5	106%
TRHC29 - C36	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-5	106%
TRH>C10-C16	mg/kg	50	Org-003	<50	[NT]	[NT]	LCS-5	103%
TRH>C16-C34	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-5	106%
TRH>C34-C40	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-5	106%
Surrogate o-Terphenyl	%		Org-003	86	[NT]	[NT]	LCS-5	100%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Soil						Base II Duplicate II % RPD		
Date extracted	-			09/02/2 017	[NT]	[NT]	LCS-5	09/02/2017
Date analysed	-			09/02/2 017	[NT]	[NT]	LCS-5	09/02/2017
Naphthalene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	LCS-5	98%
Acenaphthylene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Acenaphthene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Fluorene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	LCS-5	100%
Phenanthrene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	LCS-5	109%
Anthracene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Fluoranthene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	LCS-5	103%
Pyrene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	LCS-5	105%
Benzo(a)anthracene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Chrysene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	LCS-5	104%
Benzo(b,j+k) fluoranthene	mg/kg	0.2	Org-012	<0.2	[NT]	[NT]	[NR]	[NR]

Client Reference: E27168KF, Chatswood									
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery	
PAHs in Soil						Base II Duplicate II %RPD			
Benzo(a)pyrene	mg/kg	0.05	Org-012	<0.05	[NT]	[NT]	LCS-5	88%	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]	
<i>Surrogate p</i> -Terphenyl- d14	%		Org-012	96	[NT]	[NT]	LCS-5	115%	
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery	
Organochlorine Pesticides in soil						Base II Duplicate II % RPD			
Date extracted	-			09/02/2 017	[NT]	[NT]	LCS-5	09/02/2017	
Date analysed	-			09/02/2 017	[NT]	[NT]	LCS-5	09/02/2017	
НСВ	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]	
alpha-BHC	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-5	116%	
gamma-BHC	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]	
beta-BHC	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-5	118%	
Heptachlor	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-5	107%	
delta-BHC	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]	
Aldrin	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-5	114%	
Heptachlor Epoxide	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-5	117%	
gamma-Chlordane	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]	
alpha-chlordane	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]	
Endosulfan I	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]	
pp-DDE	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-5	124%	
Dieldrin	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-5	127%	
Endrin	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-5	124%	
pp-DDD	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-5	115%	
Endosulfan II	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]	
pp-DDT	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]	
Endrin Aldehyde	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]	
Endosulfan Sulphate	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-5	88%	
Methoxychlor	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]	
Surrogate TCMX	%		Org-005	95	[NT]	[NT]	LCS-5	99%	

Client Reference: E27168KF, Chatswood								
QUALITY CONTROL Organophosphorus Pesticides	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results Base II Duplicate II %RPD	Spike Sm#	Spike % Recovery
	_			00/00/0			100.5	
Date extracted	-			09/02/2 017	[NT]	[N1]	LCS-5	09/02/2017
Date analysed	-			09/02/2 017	[NT]	[NT]	LCS-5	09/02/2017
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	[NR]	[NR]
Bromophos-ethyl	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	[NR]	[NR]
Chlorpyriphos	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	LCS-5	108%
Chlorpyriphos-methyl	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	[NR]	[NR]
Diazinon	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	[NR]	[NR]
Dichlorvos	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	LCS-5	95%
Dimethoate	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	[NR]	[NR]
Ethion	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	LCS-5	93%
Fenitrothion	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	LCS-5	116%
Malathion	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	LCS-5	91%
Parathion	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	LCS-5	123%
Ronnel	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	LCS-5	126%
Surrogate TCMX	%		Org-008	95	[NT]	[NT]	LCS-5	94%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PCBs in Soil						Base II Duplicate II % RPD		
Date extracted	-			09/02/2 017	[NT]	[NT]	LCS-5	09/02/2017
Date analysed	-			09/02/2 017	[NT]	[NT]	LCS-5	09/02/2017
Aroclor 1016	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Aroclor 1221	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Aroclor 1232	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Aroclor 1242	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Aroclor 1248	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Aroclor 1254	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	LCS-5	114%
Aroclor 1260	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Surrogate TCLMX	%		Org-006	95	[NT]	[NT]	LCS-5	94%

Client Reference: E27168KF, Chatswood								
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Acid Extractable metals in soil						Base II Duplicate II % RPD		
Date prepared	-			09/02/2 017	[NT]	[NT]	LCS-5	09/02/2017
Date analysed	-			10/02/2 017	[NT]	[NT]	LCS-5	10/02/2017
Arsenic	mg/kg	4	Metals-020	<4	[NT]	[NT]	LCS-5	98%
Cadmium	mg/kg	0.4	Metals-020	<0.4	[NT]	[NT]	LCS-5	105%
Chromium	mg/kg	1	Metals-020	<1	[NT]	[NT]	LCS-5	103%
Copper	mg/kg	1	Metals-020	<1	[NT]	[NT]	LCS-5	102%
Lead	mg/kg	1	Metals-020	<1	[NT]	[NT]	LCS-5	100%
Mercury	mg/kg	0.1	Metals-021	<0.1	[NT]	[NT]	LCS-5	92%
Nickel	mg/kg	1	Metals-020	<1	[NT]	[NT]	LCS-5	101%
Zinc	mg/kg	1	Metals-020	<1	[NT]	[NT]	LCS-5	103%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Misc Inorg - Soil						Base II Duplicate II % RPD		
Date prepared	-			13/02/2 017	[NT]	[NT]	LCS-5	13/02/2017
Date analysed	-			13/02/2 017	[NT]	[NT]	LCS-5	13/02/2017
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	[NT]	[NT]	LCS-5	102%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank				
Clay 50-120g								
Date prepared	-			[NT]				
Date analysed	-			[NT]				
Clay in soils <2µm	%		AS1289.3.6	[NT]				
	(w/w)		.3					
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
CEC						Base II Duplicate II % RPD		
Date prepared	-			14/02/2 017	[NT]	[NT]	LCS-5	14/02/2017
Date analysed	-			14/02/2 017	[NT]	[NT]	LCS-5	14/02/2017
Exchangeable Ca	meq/100 g	0.1	Metals-009	<0.1	[NT]	[NT]	LCS-5	102%
Exchangeable K	meq/100 g	0.1	Metals-009	<0.1	[NT]	[NT]	LCS-5	111%
ExchangeableMg	meq/100 g	0.1	Metals-009	<0.1	[NT]	[NT]	LCS-5	100%
ExchangeableNa	meq/100 g	0.1	Metals-009	<0.1	[NT]	[NT]	LCS-5	102%

	UNITS	POI	METHOD	Blank	ן		
Metals in TCLP USEPA1311		, ac					
Date extracted	-			10/02/2 017			
Date analysed	-			10/02/2 017			
Lead in TCLP	mg/L	0.03	Metals-020 ICP-AES	<0.03			
Nickel in TCLP	mg/L	0.02	Metals-020 ICP-AES	<0.02			
QUALITYCONTROL PAHsinTCLP (USEPA 1311)	UNITS	PQL	METHOD	Blank			
Date extracted	-			13/02/2			
Date analysed	-			13/02/2 017			
Naphthalene in TCLP	mg/L	0.001	Org-012	<0.001			
Acenaphthylene in TCLP	mg/L	0.001	Org-012	<0.001			
Acenaphthene in TCLP	mg/L	0.001	Org-012	<0.001			
Fluorene in TCLP	mg/L	0.001	Org-012	<0.001			
Phenanthrene in TCLP	mg/L	0.001	Org-012	<0.001			
Anthracene in TCLP	mg/L	0.001	Org-012	<0.001			
Fluoranthene in TCLP	mg/L	0.001	Org-012	<0.001			
Pyrene in TCLP	mg/L	0.001	Org-012	<0.001			
Benzo(a)anthracene in TCLP	mg/L	0.001	Org-012	<0.001			
Chrysene in TCLP	mg/L	0.001	Org-012	<0.001			
Benzo(bjk)fluoranthene in TCLP	mg/L	0.002	Org-012	<0.002			
Benzo(a)pyrene in TCLP	mg/L	0.001	Org-012	<0.001			
Indeno(1,2,3-c,d)pyrene -TCLP	mg/L	0.001	Org-012	<0.001			
Dibenzo(a,h)anthracene in TCLP	mg/L	0.001	Org-012	<0.001			
Benzo(g,h,i)perylene in TCLP	mg/L	0.001	Org-012	<0.001			
<i>Surrogate p</i> -Terphenyl- d14	%		Org-012	125			
QUALITY CONTROL Metals in TCLP USEPA131	1	S	Dup. Sm#	Base+D	Duplicate Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-		[NT]		[NT]	LCS-W1	10/02/2017
Date analysed	-		[NT]		[NT]	LCS-W1	10/02/2017
LeadinTCLP	ma/l	_	INTI		 [NT]	LCS-W1	100%
Nickelin TCI P	mg/l		INTI		INTI	LCS-W/1	101%
	ing/L	-	[ivi]	1	[[1]]	L00-W1	10170

		Client Referenc	e: E27168KF, Chatsv	vood	
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
PAHs in TCLP (USEPA 1311)			Base + Duplicate + %RPD		
Date extracted	-	[NT]	[NT]	LCS-W1	13/02/2017
Date analysed	-	[NT]	[NT]	LCS-W1	13/02/2017
NaphthaleneinTCLP	mg/L	[NT]	[NT]	LCS-W1	106%
Acenaphthylene in TCLP	mg/L	[NT]	[NT]	[NR]	[NR]
Acenaphthene in TCLP	mg/L	[NT]	[NT]	[NR]	[NR]
Fluorene in TCLP	mg/L	[NT]	[NT]	LCS-W1	124%
Phenanthrene in TCLP	mg/L	[NT]	[NT]	LCS-W1	125%
Anthracene in TCLP	mg/L	[NT]	[NT]	[NR]	[NR]
Fluoranthene in TCLP	mg/L	[NT]	[NT]	LCS-W1	120%
Pyrene in TCLP	mg/L	[NT]	[NT]	LCS-W1	118%
Benzo(a)anthracene in TCLP	mg/L	[NT]	[NT]	[NR]	[NR]
Chrysene in TCLP	mg/L	[NT]	[NT]	LCS-W1	108%
Benzo(bjk)fluoranthene in TCLP	mg/L	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene in TCLP	mg/L	[NT]	[NT]	LCS-W1	119%
Indeno(1,2,3-c,d)pyrene - TCLP	mg/L	[NT]	[NT]	[NR]	[NR]
Dibenzo(a,h)anthracene in TCLP	mg/L	[NT]	[NT]	[NR]	[NR]
Benzo(g,h,i)perylene in TCLP	mg/L	[NT]	[NT]	[NR]	[NR]
Surrogate p-Terphenyl-d14	%	[NT]	[NT]	LCS-W1	104%

Report Comments:

Asbestos: A portion of the supplied sample was sub-sampled for asbestos analysis according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g of sample in its own container.

Note: Samples 161150-A-7, 27 were sub-sampled from jars provided by the client.

Asbestos ID was analysed by Approved Identifier:Lucy ZhuAsbestos ID was authorised by Approved Signatory:Paul Ching

INS: Insufficient sample for this test NR: Test not required <: Less than PQL: Practical Quantitation Limit RPD: Relative Percent Difference >: Greater than NT: Not tested NA: Test not required LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Environmental Investigation Services
Attention	Geoff Fletcher

Sample Login Details	
Your Reference	E27168KF, Chatswood
Envirolab Reference	161150-A
Date Sample Received	01/02/2017
Date Instructions Received	08/02/2017
Date Results Expected to be Reported	15/02/2017

Sample Condition							
Samples received in appropriate condition for analysis	YES						
No. of Samples Provided	Additional Testing on 12 Soils						
Turnaround Time Requested	Standard						
Temperature on receipt (°C)	19.3						
Cooling Method	Ice						
Sampling Date Provided	YES						

Comments Samples will be held for 1 month for water samples and 2 months for soil samples from date of receipt of samples missing BH109 0.65-0.8

Please direct any queries to:

Aileen Hie	Jacinta Hurst						
Phone: 02 9910 6200	Phone: 02 9910 6200						
Fax: 02 9910 6201	Fax: 02 9910 6201						
Email: ahie@envirolabservices.com.au	Email: jhurst@envirolabservices.com.au						

Sample and Testing Details on following page

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

Sample Id	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides	PCBs in Soil	Acid Extractable metals in soil	pH 1:5 soil:water	Clay 50-120g	CEC	Asbestos ID - soils	Metals in TCLP USEPA1311	PAHs in TCLP (USEPA 1311)	On Hold
BH101-0.1-0.2												<	\checkmark	
BH101-0.5- 0.95														\checkmark
BH102-0.1-0.2														\checkmark
BH103-00.1														√
BH104-0.0-0.1														√
BH104-0.5-														\checkmark
BH104-1 5-	./	./	./				./				./			
1.95	v	v	v				v				v			
BH105-0.1-0.2														\checkmark
BH105-0.5-0.6														\checkmark
BH106-0.05- 0.3														\checkmark
BH106-0.4-0.7														\checkmark
BH107-0.05-														\checkmark
	/	/	/				/							
BH108-0.05-	V	V	V				V							/
0.2														V
BH108-0.3-0.6														\checkmark
BH109-0.05- 0.2								\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	
BH109-0.5- 0.65														\checkmark
BH109-0.8-1.1	\checkmark	\checkmark	\checkmark				\checkmark							
BH110-0.1-0.3	•	•	•				•							\checkmark
BH110-0.4-0.6														v √
BH111-0.06-														\checkmark
0.25														
BH111-0.5- 0.95														\checkmark
BH111-1.3-1.5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark							
BH111-1.65- 1 8														\checkmark
BH112-0.1-0.3	\vdash													./
BH112-0.5-														v √
0.95														
BH112-1.5- 1.95	\checkmark	\checkmark	\checkmark				\checkmark				\checkmark			
BH112-2.7-3.0	\checkmark	\checkmark	\checkmark				\checkmark							

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

Sample Id	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides	PCBs in Soil	Acid Extractable metals in soil	pH 1:5 soil:water	Clay 50-120g	CEC	Asbestos ID - soils	Metals in TCLP USEPA1311	PAHs in TCLP (USEPA 1311)	On Hold	
BH113-0.1-0.3												\checkmark			
BH113-0.4-0.7	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark								
BH114-0-0.2														\checkmark	
BH114-0.5-														\checkmark	
0.95															
BH114-1.5- 1.95								\checkmark	\checkmark	\checkmark		\checkmark			
BH114-2.7-3.0	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark								
BH115-0-0.2														\checkmark	
DUPGF1														\checkmark	
DUPGF2														\checkmark	
TBS														\checkmark	
GFF1														\checkmark	
BH111 -														\checkmark	
[TRIPLICATE]-															
0.06-0.25															
BH114 -														\checkmark	
[TRIPLICATE]-															
1.5-1.5															

Aileen Hie

From:	Geoff Fletcher <gfletcher@jkgroup.net.au></gfletcher@jkgroup.net.au>
Sent:	Wednesday, 8 February 2017 1:19 PM
То:	Aileen Hie
Subject:	Additional testing 161150 Chatswood E27168KF
Importance:	High

Hi Aileen,

The lab report also references BH114 1.5-1.9m. This sample should be BH114 1.5-1.95

Could we please schedule the following additional testing from the above lab report:

- BH101 (0.1-0.2m) TCLP B(a)P; .
- BH104 (1.5-1.95m) Combo 3a;
- 13. BH107 (0.3-0.6m) Combo 3;
- 16. BH109 (0.05-0.2m) TCLP B(a)P and (pH, CEC, Clay content);
- BH109 (0.8-1.1m) Combo 3;
- BH111 (1.3-1.5m) Combo 6;
- BH112 (1.5-1.95m) Combo 3a;
- BH112 (2.7-3.0m) Combo 3;
- BH113 (0.1-0.3m) TCLP lead;
- 53259 BH113 (0.4-0.7m) Combo 6;
- BH114 (1.5-1.95m) TCLP lead and nickel, and (pH, CEC and clay content); and
- BH114 (2.7-3.0m) Combo 6.

Regards,

Geoff Fletcher Senior Environmental Scientist

T: +612 9888 5000 F: +612 9888 5001 GFletcher@jkgroup.net.au

www.jkgroup.net.au

ENVIRONMENTAL INVESTIGATION SERVICES

CONSULTING ENVIRONMENTAL ENGINEERS AND SCIENTISTS PO Box 976, North Ryde BC NSW 1670 115 Wicks Rd, Macquarie Park NSW 2113

This email and any attachments are confidential and may be privileged in which case neither is intended to be waived. If you have received this message in error, please notify us and remove it from your system. It is your responsibility to check any attachments for viruses and defects before opening or sending them on. At the Company's discretion we may send a paper copy for confirmation. In the event of any discrepancy between paper and electronic versions the paper version is to take precedence.

Envirolab Ref. 16/150 A

DJe: 15/2/17

Std + 1A.

This email has been scanned by the Symantec Email Security.cloud service. For more information please visit http://www.symanteccloud.com

email: lab@mpl.com.au envirolab.com.au

Envirolab Services (WA) Pty Ltd trading as MPL Laboratories | ABN 53 140 099 207

CERTIFICATE OF ANALYSIS 191644

Client: Environmental Investigation Services 115 Wicks Road MACQUARIE PARK NSW 2113

Attention: G Fletcher

Sample log in details:

Your Reference: No. of samples: Date/Time samples received: Date completed instructions received: Location:

E27168KF

1 Sample 03/02/2017 / 12:40 03/02/2017

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last pages of this report for any comments relating to the results.*

Report Details:

 Date results requested by:
 9/02/17

 Date of Preliminary Report:
 Not issued

 Issue Date:
 9/02/17

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025 - Testing

 Tests not covered by NATA are denoted with *.

Results Approved By:

Todd Lee Laboratory Manager

MPL Reference: Revision No: 191644 R 00

Client Reference: E27168KF

vTRH(C6-C10)/MBTEXN in soil		
Our Reference:	UNITS	191644-1
Your Reference		Dup GF 2
Type of sample		Soil
Date extracted	-	06/02/2017
Date analysed	-	07/02/2017
TRHC6 - C9	mg/kg	<25
TRHC6 - C10	mg/kg	<25
TRHC6-C10 less BTEX (F1)	mg/kg	<25
MTBE	mg/kg	<0.5
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-xylene	mg/kg	<1
Naphthalene	mg/kg	<1
Surrogate aaa-Trifluorotoluene	%	93

191644 R 00

Client Reference: E27168KF

svTRH(C10-C36) in soil		
Our Reference:	UNITS	191644-1
Your Reference		Dup GF 2
Type of sample		Soil
Date extracted	-	06/02/2017
Date analysed	-	07/02/2017
TRHC 10 - C 14	mg/kg	<50
TRHC 15 - C28	mg/kg	<100
TRHC29 - C36	mg/kg	<100
TRH>C10 - C16	mg/kg	<50
TRH>C10-C16 less N (F2)	mg/kg	<50
TRH>C16 - C34	mg/kg	<100
TRH>C34 - C40	mg/kg	<100
Surrogate o-Terphenyl	%	98

Client Reference: E27168KF

PAHs in Soil		
Our Reference:	UNITS	191644-1
Your Reference		Dup GF 2
Type of sample		Soil
Date extracted	-	06/02/2017
Date analysed	-	08/02/2017
Naphthalene	mg/kg	<0.1
Acenaphthylene	mg/kg	<0.1
Acenaphthene	mg/kg	<0.1
Fluorene	mg/kg	<0.1
Phenanthrene	mg/kg	<0.1
Anthracene	mg/kg	<0.1
Fluoranthene	mg/kg	0.2
Pyrene	mg/kg	0.3
Benzo(a)anthracene	mg/kg	0.1
Chrysene	mg/kg	0.1
Benzo(b,j+k)fluoranthene	mg/kg	0.4
Benzo(a)pyrene	mg/kg	0.23
Indeno(1,2,3-c,d)pyrene	mg/kg	0.2
Dibenzo(a,h)anthracene	mg/kg	<0.1
Benzo(g,h,i)perylene	mg/kg	0.2
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5
Total Positive PAHs	mg/kg	1.8
p-Terphenyl-D14	%	110
Client Reference: E271

E27168KF

Organochlorine Pesticides in soil Our Reference: Your Reference Type of sample	UNITS	191644-1 Dup GF 2 Soil
Date extracted		06/02/2017
Date analysed	-	08/02/2017
Hexachlorobenzene (HCB)	mg/kg	<0.1
a-BHC	mg/kg	<0.1
b-BHC	mg/kg	<0.1
Lindane (g-BHC)	mg/kg	<0.1
d-BHC	mg/kg	<0.1
Heptachlor	mg/kg	<0.1
Aldrin	mg/kg	<0.1
Heptachlor Epoxide	mg/kg	<0.1
a-Chlordane	mg/kg	<0.1
g-Chlordane	mg/kg	<0.1
a-Endosulphan	mg/kg	<0.1
p,p'-DDE	mg/kg	<0.1
Dieldrin	mg/kg	<0.1
Endrin	mg/kg	<0.1
p,p'-DDD	mg/kg	<0.1
b-Endosulphan	mg/kg	<0.1
Endrin Aldehyde	mg/kg	<0.1
Endosulfan Sulphate	mg/kg	<0.1
p,p'-DDT	mg/kg	<0.1
Endrin Ketone	mg/kg	<0.1
Methoxychlor	mg/kg	<0.1
p-Terphenyl-D14	%	110

Organophosphorus Pesticides		
Our Reference:	UNITS	191644-1
Your Reference		Dup GF 2
Type of sample		Soil
Date extracted	-	06/02/2017
Date analysed	-	08/02/2017
Diazinon (Dimpylate)	mg/kg	<0.1
Chlorpyrifos-methyl	mg/kg	<0.1
Ronnel	mg/kg	<0.1
Fenitrothion	mg/kg	<0.1
Malathion (Maldison)	mg/kg	<0.1
Chlorpyrifos (ethyl)	mg/kg	<0.1
Parathion (ethyl)	mg/kg	<0.1
Ethion	mg/kg	<0.1
Bromophos Ethyl	mg/kg	<0.1
Dimethoate	mg/kg	<0.1
Dichlorvos	mg/kg	<0.1
Azinphos Methyl (Guthion)	mg/kg	<0.1
p-Terphenyl-D14	%	110

PCBs in Soil		
Our Reference:	UNITS	191644-1
Your Reference		Dup GF 2
Type of sample		Soil
Date extracted	-	06/02/2017
Date analysed	-	08/02/2017
Arochlor 1016	mg/kg	<0.1
Arochlor 1221	mg/kg	<0.1
Arochlor 1232	mg/kg	<0.1
Arochlor 1242	mg/kg	<0.1
Arochlor 1248	mg/kg	<0.1
Arochlor 1254	mg/kg	<0.1
Arochlor 1260	mg/kg	<0.1

Acid Extractable metals in soil		
Our Reference:	UNITS	191644-1
Your Reference		Dup GF 2
Type of sample		Soil
Date digested	-	6/02/2017
Date analysed	-	8/02/2017
Arsenic	mg/kg	3
Cadmium	mg/kg	<0.4
Chromium	mg/kg	12
Copper	mg/kg	26
Lead	mg/kg	22
Mercury	mg/kg	0.3
Nickel	mg/kg	12
Zinc	mg/kg	72

Moisture		
Our Reference:	UNITS	191644-1
Your Reference		Dup GF 2
Type of sample		Soil
Date prepared	-	6/02/2017
Date analysed	-	7/02/2017
Moisture	%	5.7

MethodID	MethodologySummary
ORG-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
ORG-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
ORG-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM draft B1 Guideline on Investigation Levels for Soil and Groundwater.
ORG-012	 For soil results:- 1. 'TEQ PQL' values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" li="" may="" most="" not="" pahs="" positive="" pql.="" present.<="" teq="" teqs="" that="" the="" this="" to=""> 2. 'TEQ zero' values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" li="" more="" negative="" pahs="" pql.<="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""> 3. 'TEQ half PQL' values are assuming all contributing PAHs reported as <pql a="" above.<="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" li="" mid-point="" most="" pql.="" stipulated="" the=""> Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PAHs" is simply a sum of the positive individual PAHs. </pql></pql></pql>
ORG-004	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
ORG-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
ORG-008/015	Organophosphorus Pesticides in soil by DCM: Acetone extraction and water by DCM extraction with determination by GC-ECD/GC-MS.
ORG-008	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
ORG-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
METALS-020	Metals in soil and water by ICP-OES.
METALS-021	Determination of Mercury by Cold Vapour AAS.
INORG-008	Moisture content determined by heating at 105 deg C for a minimum of 12 hours.

Client Reference: E27168KF								
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
vTRH(C6-C10)/MBTEXN in soil						Base II Duplicate II % RPD		
Date extracted	-			06/02/ 2017	[NT]	[NT]	LCS-1	06/02/2017
Date analysed	-			07/02/ 2017	[NT]	[NT]	LCS-1	07/02/2017
TRHC6 - C9	mg/kg	25	ORG-016	<25	[NT]	[NT]	LCS-1	96%
TRHC6 - C10	mg/kg	25	ORG-016	<25	[NT]	[NT]	LCS-1	96%
MTBE	mg/kg	0.5	ORG-016	<0.5	[NT]	[NT]	[NR]	[NR]
Benzene	mg/kg	0.2	ORG-016	<0.2	[NT]	[NT]	LCS-1	100%
Toluene	mg/kg	0.5	ORG-016	<0.5	[NT]	[NT]	LCS-1	99%
Ethylbenzene	mg/kg	1	ORG-016	<1	[NT]	[NT]	LCS-1	94%
m+p-xylene	mg/kg	2	ORG-016	~2	[NT]	[NT]	LCS-1	93%
o-xylene	mg/kg	1	ORG-016	<1	[NT]	[NT]	LCS-1	93%
Naphthalene	mg/kg	1	ORG-016	<1	[NT]	[NT]	[NR]	[NR]
<i>Surrogate</i> aaa- Trifluorotoluene	%		ORG-016	97	[NT]	[NT]	LCS-1	91%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike	Spike %
svTRH(C10-C36) in soil						Base II Duplicate II % RPD	Sm#	Recovery
Date extracted	-			06/02/ 2017	[NT]	[NT]	LCS-1	06/02/2017
Date analysed	-			07/02/ 2017	[NT]	[NT]	LCS-1	07/02/2017
TRHC 10 - C14	mg/kg	50	ORG-003	<50	[NT]	[NT]	LCS-1	95%
TRHC 15 - C28	mg/kg	100	ORG-003	<100	[NT]	[NT]	LCS-1	96%
TRHC29 - C36	mg/kg	100	ORG-003	<100	[NT]	[NT]	LCS-1	97%
TRH>C10 - C16	mg/kg	50	ORG-003	<50	[NT]	[NT]	LCS-1	94%
TRH>C16 - C34	mg/kg	100	ORG-003	<100	[NT]	[NT]	LCS-1	96%
TRH>C34 - C40	mg/kg	100	ORG-003	<100	[NT]	[NT]	LCS-1	98%
Surrogate o-Terphenyl	%		ORG-003	94	[NT]	[NT]	LCS-1	95%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Soil						Base II Duplicate II % RPD		
Date extracted	-			06/02/ 2017	[NT]	[NT]	LCS-1	06/02/2017
Date analysed	-			08/02/ 2017	[NT]	[NT]	LCS-1	08/02/2017
Naphthalene	mg/kg	0.1	ORG-012	<0.1	[NT]	[NT]	LCS-1	97%
Acenaphthylene	mg/kg	0.1	ORG-012	<0.1	[NT]	[NT]	[NR]	[NR]
Acenaphthene	mg/kg	0.1	ORG-012	<0.1	[NT]	[NT]	[NR]	[NR]
Fluorene	mg/kg	0.1	ORG-012	<0.1	[NT]	[NT]	LCS-1	101%
Phenanthrene	mg/kg	0.1	ORG-012	<0.1	[NT]	[NT]	LCS-1	99%
Anthracene	mg/kg	0.1	ORG-012	<0.1	[NT]	[NT]	[NR]	[NR]
Fluoranthene	mg/kg	0.1	ORG-012	<0.1	[NT]	[NT]	LCS-1	101%
Pyrene	mg/kg	0.1	ORG-012	<0.1	[NT]	[NT]	LCS-1	98%
Benzo(a)anthracene	mg/kg	0.1	ORG-012	<0.1	[NT]	[NT]	[NR]	[NR]

MPL Reference: Revision No: 191644 R 00 Page 11 of 17

Client Reference: E27168KF								
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Soil						Base II Duplicate II % RPD		,
Chrysene	mg/kg	0.1	ORG-012	<0.1	[NT]	[NT]	LCS-1	95%
Benzo(b,j +k)fluoranthene	mg/kg	0.2	ORG-012	<0.2	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene	mg/kg	0.05	ORG-012	<0.05	[NT]	[NT]	LCS-1	103%
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	ORG-012	<0.1	[NT]	[NT]	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	0.1	ORG-012	<0.1	[NT]	[NT]	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	0.1	ORG-012	<0.1	[NT]	[NT]	[NR]	[NR]
p-Terphenyl-D14	%		ORG-012	110	[NT]	[NT]	LCS-1	109%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Organochlorine Pesticides in soil						Base II Duplicate II % RPD		
Date extracted	-			06/02/ 2017	[NT]	[NT]	LCS-1	06/02/2017
Date analysed	-			08/02/ 2017	[NT]	[NT]	LCS-1	08/02/2017
Hexachlorobenzene (HCB)	mg/kg	0.1	ORG-012	<0.1	[NT]	[NT]	[NR]	[NR]
a-BHC	mg/kg	0.1	ORG-012	<0.1	[NT]	[NT]	LCS-1	92%
b-BHC	mg/kg	0.1	ORG-012	<0.1	[NT]	[NT]	LCS-1	95%
Lindane (g-BHC)	mg/kg	0.1	ORG-012	<0.1	[NT]	[NT]	[NR]	[NR]
d-BHC	mg/kg	0.1	ORG-012	<0.1	[NT]	[NT]	[NR]	[NR]
Heptachlor	mg/kg	0.1	ORG-012	<0.1	[NT]	[NT]	LCS-1	69%
Aldrin	mg/kg	0.1	ORG-012	<0.1	[NT]	[NT]	LCS-1	92%
Heptachlor Epoxide	mg/kg	0.1	ORG-012	<0.1	[NT]	[NT]	LCS-1	91%
a-Chlordane	mg/kg	0.1	ORG-012	<0.1	[NT]	[NT]	[NR]	[NR]
g-Chlordane	mg/kg	0.1	ORG-012	<0.1	[NT]	[NT]	[NR]	[NR]
a-Endosulphan	mg/kg	0.1	ORG-012	<0.1	[NT]	[NT]	[NR]	[NR]
p,p'-DDE	mg/kg	0.1	ORG-012	<0.1	[NT]	[NT]	LCS-1	95%
Dieldrin	mg/kg	0.1	ORG-012	<0.1	[NT]	[NT]	LCS-1	93%
Endrin	mg/kg	0.1	ORG-012	<0.1	[NT]	[NT]	[NR]	[NR]
p,p'-DDD	mg/kg	0.1	ORG-012	<0.1	[NT]	[NT]	LCS-1	118%
b-Endosulphan	mg/kg	0.1	ORG-012	<0.1	[NT]	[NT]	[NR]	[NR]
Endrin Aldehyde	mg/kg	0.1	ORG-012	<0.1	[NT]	[NT]	[NR]	[NR]
Endosulfan Sulphate	mg/kg	0.1	ORG-012	<0.1	[NT]	[NT]	LCS-1	103%
p,p'-DDT	mg/kg	0.1	ORG-012	<0.1	[NT]	[NT]	[NR]	[NR]
Endrin Ketone	mg/kg	0.1	ORG-012	<0.1	[NT]	[NT]	[NR]	[NR]
Methoxychlor	mg/kg	0.1	ORG-012	<0.1	[NT]	[NT]	[NR]	[NR]
p-Terphenyl-D14	%		ORG- 008/015	110	[NT]	[NT]	LCS-1	109%

Client Reference: E27168KF								
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Organophosphorus Pesticides						Base II Duplicate II % RPD		
Date extracted	-			06/02/ 2017	[NT]	[NT]	LCS-1	06/02/2017
Date analysed	-			08/02/ 2017	[NT]	[NT]	LCS-1	08/02/2017
Diazinon (Dimpylate)	mg/kg	0.1	ORG- 008/015	<0.1	[NT]	[NT]	[NR]	[NR]
Chlorpyrifos-methyl	mg/kg	0.1	ORG- 008/015	<0.1	[NT]	[NT]	LCS-1	90%
Ronnel	mg/kg	0.1	ORG- 008/015	<0.1	[NT]	[NT]	[NR]	[NR]
Fenitrothion	mg/kg	0.1	ORG- 008/015	<0.1	[NT]	[NT]	LCS-1	110%
Malathion (Maldison)	mg/kg	0.1	ORG- 008/015	<0.1	[NT]	[NT]	[NR]	[NR]
Chlorpyrifos (ethyl)	mg/kg	0.1	ORG- 008/015	<0.1	[NT]	[NT]	LCS-1	93%
Parathion (ethyl)	mg/kg	0.1	ORG- 008/015	<0.1	[NT]	[NT]	[NR]	[NR]
Ethion	mg/kg	0.1	ORG- 008/015	<0.1	[NT]	[NT]	LCS-1	114%
Bromophos Ethyl	mg/kg	0.1	ORG- 008/015	<0.1	[NT]	[NT]	[NR]	[NR]
Dimethoate	mg/kg	0.1	ORG- 008/015	<0.1	[NT]	[NT]	[NR]	[NR]
Dichlorvos	mg/kg	0.1	ORG-008	<0.1	[NT]	[NT]	[NR]	[NR]
Azinphos Methyl (Guthion)	mg/kg	0.1	ORG-008	<0.1	[NT]	[NT]	[NR]	[NR]
p-Terphenyl-D14	%		ORG- 008/015	110	[NT]	[NT]	LCS-1	109%

Client Reference: E27168KF								
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PCBs in Soil						Base II Duplicate II %RPD		
Date extracted	-			06/02/ 217	[NT]	[NT]	LCS-1	06/02/217
Date analysed	-			08/02/ 2017	[NT]	[NT]	LCS-1	08/02/2017
Arochlor 1016	mg/kg	0.1	ORG-006	<0.1	[NT]	[NT]	[NR]	[NR]
Arochlor 1221	mg/kg	0.1	ORG-006	<0.1	[NT]	[NT]	[NR]	[NR]
Arochlor 1232	mg/kg	0.1	ORG-006	<0.1	[NT]	[NT]	[NR]	[NR]
Arochlor 1242	mg/kg	0.1	ORG-006	<0.1	[NT]	[NT]	[NR]	[NR]
Arochlor 1248	mg/kg	0.1	ORG-006	<0.1	[NT]	[NT]	[NR]	[NR]
Arochlor 1254	mg/kg	0.1	ORG-006	<0.1	[NT]	[NT]	LCS-1	96%
Arochlor 1260	mg/kg	0.1	ORG-006	<0.1	[NT]	[NT]	[NR]	[NR]
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Acid Extractable metals in soil						Base II Duplicate II %RPD		
Date digested	-			6/02/2 017	[NT]	[NT]	LCS-1	6/02/2017
Date analysed	-			8/02/2 017	[NT]	[NT]	LCS-1	8/02/2017
Arsenic	mg/kg	2	METALS- 020	~2	[NT]	[NT]	LCS-1	98%
Cadmium	mg/kg	0.4	METALS- 020	<0.4	[NT]	[NT]	LCS-1	98%
Chromium	mg/kg	1	METALS- 020	<1	[NT]	[NT]	LCS-1	99%
Copper	mg/kg	1	METALS- 020	<1	[NT]	[NT]	LCS-1	104%
Lead	mg/kg	1	METALS- 020	<1	[NT]	[NT]	LCS-1	99%
Mercury	mg/kg	0.1	METALS- 021	<0.1	[NT]	[NT]	LCS-1	115%
Nickel	mg/kg	1	METALS- 020	<1	[NT]	[NT]	LCS-1	102%
Zinc	mg/kg	1	METALS- 020	<1	[NT]	[NT]	LCS-1	100%

QUALITY CONTROL Moisture	UNITS	PQL	METHOD	Blank
Date prepared	-			06/02/ 2017
Date analysed	-			07/02/ 2017
Moisture	%	0.1	INORG-008	<0.10

MPL Reference:191644Revision No:R 00

Page 15 of 17

Report Comments:

Asbestos Signatories:

Asbestos was analysed by Approved Identifier: Airborne fibres were analysed by Approved Counter: Not applicable for this job Not applicable for this job

Definitions:

NT: Not tested NA: Test not required INS: Insufficient sample for this test PQL: Practical Quantitation Limit <: Less than >: Greater than RPD: Relative Percent Difference LCS: Laboratory Control Sample NS: Not Specified NEPM: National Environmental Protection Measure NR: Not Reported

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

16 - 18 Hayden Court, Myaree, Western Australia 6154 PO Box 4023 Myaree BC, Western Australia 6960 Tel: +61 8 9317 2505 / Fax: +61 8 9317 4163 email: laboratory@mpl.com.au www.mpl.com.au Envirolab Services (WA) Pty Ltd ABN 63 140 099 207

SAMPLE RECEIPT ADVICE

Client Details	
Client	Environmental Investigation Services
Attention	G Fletcher

Sample Login Details	
Your Reference	E27168KF
Envirolab Reference	191644
Date Sample Received	03/02/2017
Date Instructions Received	03/02/2017
Date Results Expected to be Reported	09/02/2017

Sample Condition							
Samples received in appropriate condition for analysis	YES						
No. of Samples Provided	1 Sample						
Turnaround Time Requested	Standard						
Temperature on receipt (°C)	28						
Cooling Method	Ice Pack						
Sampling Date Provided	Yes						

Comments

Samples will be held for 1 month for water samples and 2 months for soil samples from date of receipt of samples

Please direct any queries to:

Joshua Lim	Meredith Conroy								
Phone: 08 9317 2505	Phone: 08 9317 2505								
Fax: 08 9317 4163	Fax: 08 9317 4163								
Email: jlim@mpl.com.au	Email: mconroy@mpl.com.au								

Sample and Testing Details on following page

16 - 18 Hayden Court, Myaree, Western Australia 6154 PO Box 4023 Myaree BC, Western Australia 6960 Tel: +61 8 9317 2505 / Fax: +61 8 9317 4163 email: laboratory@mpl.com.au www.mpl.com.au Envirolab Services (WA) Pty Ltd ABN 53 140 099 207

Sample Id	vTRH(C6- C10)/MBTEXN in soil	svTRH(C10-C36) in soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides	PCBs in Soil	Acid Extractable metals in soil
Dup GF 2	1	1	1	~	1	1	1

The ' \checkmark ' indicates the testing you have requested. **THIS IS NOT A REPORT OF THE RESULTS**.

TO					S	AMP	LE AN	D CHAIN O	F CUS	TODY	FO	RM	1		-						
<u>TO:</u> ENVIROLAB SERVICES PTY LTD 12 ASHLEY STREET CHATSWOOD NSW 2067 P: (02) 99106200 F: (02) 99106201 Attention: Aileen			EIS Job Number:		E27168KF					EROM: ENVIRONMENTAL INVESTIGATION						EIS					
			Date Results STAN			STANDARD	ABD				REA	VICES R OF	5 115 \	NICKS	ROA	D					
			Req	Required:			Barrana					COUA	RIE P	ARK, I	vsw :	2113					
			Pag	e:		2 • f				P: 02-9888 5000 F: 02-98 Attention: Geoff Flet						388 5001 tcher					
Locati	ion:	Chats	Chatswood					19 J. 2011		0		Sam	ple P	reserv	ved in	Esky	on Ice	0			
Sampl	ler:	DAF + GF							1	Tests Required											
Date Sampled		Lab Sample Ref: Number		Depth (m)	Sample Container		PID	Sample Description			Combo 6	Combo 6a				втех	Asbestos				
1/2	17	25	BHIIZ	0.1-	4,	A	0	Fill				X									
1		26		05-0.95	1		0	1		12			10.00		1.12	198					
		27		1.5 1.95			0				1				-		2.140		- Arrive		
	. 9	28		2.7-			0	Scudetone			+			-		1.27		1			
1		29	BHII3	0.1-			0	Fill		-	+	X		-	1	-		1.000		+	
		30	1	0.4-7			0	Sandstone		1		~			1.0	1.0	1		100		
		31	BH 114	0-0.7		- 120790	0	EII			-	×	-	-	100		- 53- 5	1		-	
	1	32	1	0.5-		iene	0	1		1. S. 19	-	~	1975	1.00		.91			1	1781.1	
		33		1.5-			0				-	×				205.0	-		iner in	-	
		34		2-7-			D	Sadelar		-	+	~		-	-	-	-			-	
		35	BHUS	0-0.2			D	I.II			+	×		-		-	-	1			
		36	DOGEL		6		-	1.14			1	~				1240					
1	1	37	RagF2		1	1	-			: 5	2		in the second	Marga G		in the second se	1000	1			
1.12	1	38	TBS	_	unit			0.41.021.0.1		1	-	101			1.1.1	X			-	1	
30/1	117	39	GEEL		A		-	Material		-	-						X				
	1.1		100					+100			+						-		-		
					-						1	G	11			E	NVIR	DLAE	-	-	
1	1	1			195	54.					1	lak	Lab	brate	ries	5101	GRO	1	1 20		
	2			1.	1						1	Dat	e Re	c -	3-	2		4.1	-		
11	1.47			p . 2007	1.	101	110		197 - L		+	Tim	e Re	C-1	54	0		1.1	-		
Y										1941	-	Re	- By	fr	Te	F	-	3	+	4	
				STACISTICS.		-	1.201.201.2				100	TAT	Rec	- S/	ME	121	3(5	TD	-	-	
	<u></u>			Composition (1	-					-	Co	np - Q		U Ka	Pack	Nor	9	-	-	
						11	i reterre				autore and	Se	urity	Sea	-20	PINO		-			
<u>efici</u>	-		-4	and the second second		-				-	-				1.000	-			-		
Remark	ks (cor	nments	/detection lin	nits required):					Sample G - 25 A - Zip P - Plas	e Contai Omg Gla lock As stic Bag	iners ass . best	s: Jar tos B	ag			<u> </u>				r	
Relinquished By:				Date:			Time:				Received By: Date: Date: 3 2.										

Appendix D: Report Explanatory Notes

STANDARD SAMPLING PROCEDURE (SSP)

These protocols specify the basic procedures to be used when sampling soils or groundwater for environmental site assessments undertaken by EIS.

The purpose of these protocols is to provide standard methods for: sampling, decontamination procedures for sampling equipment, sample preservation, sample storage and sample handling. Deviations from these procedures must be recorded.

Soil Sampling

- Prepare a borehole/test pit log or made a note of the sample description for stockpiles.
- Layout sampling equipment on clean plastic sheeting to prevent direct contact with ground surface. The work area should be at a distance from the drill rig/excavator such that the machine can operate in a safe manner.
- Ensure all sampling equipment has been decontaminated prior to use.
- Remove any surface debris from the immediate area of the sampling location.
- Collect samples and place in glass jar with a Teflon seal. This should be undertaken as quickly as possible to prevent the loss of any volatiles. If possible, fill the glass jars completely.
- Collect samples for asbestos analysis and place in a zip-lock plastic bag.
- Label the sampling containers with the EIS job number, sample location (eg. BH1), sampling depth interval and date. If more than one sample container is used, this should also be indicated (eg. 2 = Sample jar 1 of 2 jars).
- Photoionisation detector (PID) screening of volatile organic compounds (VOCs) should be undertaken on samples using the soil sample headspace method. Headspace measurements are taken following equilibration of the headspace gasses in partly filled zip-lock plastic bags. PID headspace data is recorded on the borehole/test pit log and the chain of custody forms.
- Record the lithology of the sample and sample depth on the borehole/test pit log generally in accordance with AS1726-1993¹⁸.
- Store the sample in a sample container cooled with ice or chill packs. On completion of the sampling the sample container should be delivered to the lab immediately or stored in the refrigerator prior to delivery to the lab. All samples are preserved in accordance with the standards outlined in the report.
- Check for the presence of groundwater after completion of each borehole using an electronic dip metre or water whistle. Boreholes should be left open until the end of fieldwork. All groundwater levels in the boreholes should be rechecked on the completion of the fieldwork.
- Backfill the boreholes/test pits with the excavation cuttings or clean sand prior to leaving the site.

Decontamination Procedures for Soil Sampling Equipment

- All sampling equipment should be decontaminated between every sampling location. This excludes single use PVC tubing used for push tubes etc. Equipment and materials required for the decontamination include:
 - Phosphate free detergent (Decon 90);
 - Potable water;
 - Stiff brushes; and
 - Plastic sheets.
- Ensure the decontamination materials are clean prior to proceeding with the decontamination.

¹⁸ Standards Australia, (1993), *Geotechnical Site Investigations*. (AS1726-1993)

- Fill both buckets with clean potable water and add phosphate free detergent to one bucket.
- In the bucket containing the detergent, scrub the sampling equipment until all the material attached to the equipment has been removed.
- Rinse sampling equipment in the bucket containing potable water.
- Place cleaned equipment on clean plastic sheets.

If all materials are not removed by this procedure, high-pressure water cleaning is recommended. If any equipment is not completely decontaminated by both these processes, then the equipment should not be used until it has been thoroughly cleaned.

Groundwater Sampling

Groundwater samples are more sensitive to contamination than soil samples and therefore adhesion to this protocol is particularly important to obtain reliable, reproducible results. The recommendations detailed in AS/NZS 5667.1:1998 are considered to form a minimum standard.

The basis of this protocol is to maintain the security of the borehole and obtain accurate and representative groundwater samples. The following procedure should be used for collection of groundwater samples from previously installed groundwater monitoring wells.

- After monitoring well installation, at least three bore volumes should be pumped from the monitoring wells (well development) to remove any water introduced during the drilling process and/or the water that is disturbed during installation of the monitoring well. This should be completed prior to purging and sampling.
- Groundwater monitoring wells should then be left to recharge for at least three days before purging and sampling. Prior to purging or sampling, the condition of each well should observed and any anomalies recorded on the field data sheets. The following information should be noted: the condition of the well, noting any signs of damage, tampering or complete destruction; the condition and operation of the well lock; the condition of the protective casing and the cement footing (raised or cracked); and, the presence of water between protective casing and well.
- Take the groundwater level from the collar of the piezometer/monitoring well using an electronic dip meter. The collar level should be taken (if required) during the site visit using a dumpy level and staff.
- Purging and sampling of piezometers/monitoring wells is done on the same site visit when using micropurge (or other low flow) techniques.
- Layout and organize all equipment associated with groundwater sampling in a location where they will not interfere with the sampling procedure and will not pose a risk of contaminating samples. Equipment generally required includes:
 - Micropore filtration system or Stericup single-use filters (for heavy metals samples);
 - Filter paper for Micropore filtration system; Bucket with volume increments;
 - Sample containers: teflon bottles with 1 ml nitric acid, 75mL glass vials with 1 mL hydrochloric acid, 1 L amber glass bottles;
 - Bucket with volume increments;
 - ➢ Flow cell;
 - pH/EC/Eh/T meters;
 - Plastic drums used for transportation of purged water;
 - Esky and ice;
 - Nitrile gloves;
 - Distilled water (for cleaning);
 - Electronic dip meter;
 - Low flow pump pack and associated tubing; and
 - Groundwater sampling forms.

- If single-use stericup filtration is not used, clean the Micropore filtration system thoroughly with distilled water prior to use and between each sample. Filter paper should be changed between samples. 0.45um filter paper should be placed below the glass fibre filter paper in the filtration system.
- Ensure all non-disposable sampling equipment is decontaminated or that new disposable equipment is available prior to any work commencing at a new location. The procedure for decontamination of groundwater equipment is outlined at the end of this section.
- Disposable gloves should be used whenever samples are taken to protect the sampler and to assist in avoidance of contamination.
- Groundwater samples are obtained from the monitoring wells using low flow/micro-purge sampling equipment to reduce the disturbance of the water column and loss of volatiles.
- During pumping to purge the well, the pH, temperature, conductivity, dissolved oxygen, redox potential and groundwater levels are monitored (where possible) using calibrated field instruments to assess the development of steady state conditions. Steady state conditions are generally considered to have been achieved when the difference in the pH measurements was less than 0.2 units and the difference in conductivity was less than 10%.
- All measurements are recorded on specific data sheets.
- Once steady state conditions are considered to have been achieved, groundwater samples are obtained directly from the pump tubing and placed in appropriate glass bottles, BTEX vials or plastic bottles.
- All samples are preserved in accordance with water sampling requirements detailed in the NEPM 2013 and placed in an insulated container with ice. Groundwater samples are preserved by immediate storage in an insulated sample container with ice as outlined in the report text.
- Record the sample on the appropriate log in accordance with AS1726:1993. At the end of each water sampling complete a chain of custody form.

Decontamination Procedures for Groundwater Sampling Equipment

- All equipment associated with the groundwater sampling procedure (other than single-use items) should be decontaminated between every sampling location.
- The following equipment and materials are required for the decontamination procedure:
 - Phosphate free detergent;
 - Potable water;
 - Distilled water; and
 - Plastic Sheets or bulk bags (plastic bags).
- Fill one bucket with clean potable water and phosphate free detergent, and one bucket with distilled water.
- Flush potable water and detergent through pump head. Wash sampling equipment and pump head using brushes in the bucket containing detergent until all materials attached to the equipment are removed.
- Flush pump head with distilled water.
- Change water and detergent solution after each sampling location.
- Rinse sampling equipment in the bucket containing distilled water.
- Place cleaned equipment on clean plastic sheets.
- If all materials are not removed by this procedure that equipment should not be used until it has been thoroughly cleaned

QA/QC DEFINITIONS

The QA/QC terms used in this report are defined below. The definitions are in accordance with US EPA publication SW-846, entitled *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods* (1994¹⁹) methods and those described in *Environmental Sampling and Analysis, A Practical Guide,* (H. Keith 1991²⁰).

Practical Quantitation Limit (PQL), Limit of Reporting (LOR) & Estimated Quantitation Limit (EQL)

These terms all refer to the concentration above which results can be expressed with a minimum 95% confidence level. The laboratory reporting limits are generally set at ten times the standard deviation for the Method Detection limit (MDL) for each specific analyte. For the purposes of this report the LOR, PQL, and EQL are considered to be equivalent.

When assessing laboratory data it should be borne in mind that values at or near the PQL have two important limitations.

"The uncertainty of the measurement value can approach, and even equal, the reported value. Secondly, confirmation of the analytes reported is virtually impossible unless identification uses highly selective methods. These issues diminish when reliably measurable amounts of analytes are present. Accordingly, legal and regulatory actions should be limited to data at or above the reliable detection limit" Keith 1991.

Precision

The degree to which data generated from repeated measurements differ from one another due to random errors. Precision is measured using the standard deviation or Relative Percent Difference (RPD). Acceptable targets for precision in this report will be less than 50% RPD for concentrations greater than ten times the PQL, less than 75% RPD for concentrations between five and ten times the PQL and less than 100% RPD for concentrations that are less than five times the PQL.

Accuracy

Accuracy is a measure of the agreement between an experimental result and the true value of the parameter being measured. The assessment of accuracy for an analysis can be achieved through the analysis of known reference materials or assessed by the analysis of surrogates, field blanks, trip spikes and matrix spikes.

The proximity of an averaged result to the true value, where all random errors have been statistically removed. Accuracy is measured by percent recovery. Acceptable limits for accuracy generally lie between 70% to 130% recoveries. Certain laboratory methods may allow for values that lie outside these limits.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents a characteristic of a population, parameter variations at a sampling point, or an environmental condition. Representativeness is primarily dependent upon the design and implementation of the sampling program. Representativeness of the data is partially ensured by the avoidance of contamination, adherence to sample handing and analysis protocols and use of proper chain-of-custody and documentation procedures.

¹⁹ US EPA, (1994), *SW-846: Test Methods for Evaluating Solid Waste, Physical/Chemical Methods.* (US EPA SW-846)

²⁰ Keith., H, (1991), *Environmental Sampling and Analysis, A Practical Guide*.

Completeness

Completeness is a measure of the number of valid measurements in a data set compared to the total number of measurements made and overall performance against DQIs. The following information is assessed for completeness:

- Chain-of-custody forms; Sample receipt form;
- All sample results reported; All blank data reported;
- All laboratory duplicate and RPDs calculated;
- All surrogate spike data reported;
- All matrix spike and lab control spike (LCS) data reported and RPDs calculated;
- Spike recovery acceptable limits reported; and
- NATA stamp on reports.

Comparability

Comparability is the evaluation of the similarity of conditions (eg. sample depth, sample homogeneity) under which separate sets of data are produced. Data comparability checks include a bias assessment that may arise from the following sources:

- Collection and analysis of samples by different personnel; Use of different techniques;
- Collection and analysis by the same personnel using the same methods but at different times; and
- Spatial and temporal changes (due to environmental dynamics).

<u>Blanks</u>

The purpose of laboratory and field blanks is to check for artifacts and interferences that may arise during sampling and analysis.

Matrix Spikes

Samples are spiked with laboratory grade standards to detect interactive effects between the sample matrix and the analytes being measured. Matrix Spikes are reported as a percent recovery and are prepared for 1 in every 20 samples. Sample batches that contain less than 20 samples may be reported with a Matrix Spike from another batch. The percent recovery is calculated using the formula below. Acceptable recovery limits are 70% to 130%.

(Spike Sample Result – Sample Result) x 100 Concentration of Spike Added

Surrogate Spikes

Samples are spiked with a known concentration of compounds that are chemically related to the analyte being investigated but unlikely to be detected in the environment. The purpose of the Surrogate Spikes is to check the accuracy of the analytical technique. Surrogate Spikes are reported as percent recovery.

Duplicates

Laboratory duplicates measure precision, expressed as Relative Percent Difference. Duplicates are prepared from a single field sample and analysed as two separate extraction procedures in the laboratory. The RPD is calculated using the formula where D1 is the sample concentration and D2 is the duplicate sample concentration:

 $\frac{(D1 - D2) \times 100}{\{(D1 + D2)/2\}}$